Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
Usage
from transformers import AutoTokenizer, pipeline
import torch
model = "Rhaps360/gemma-dep-ins-ft"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda" if(torch.cuda.is_available()) else "cpu",
)
messages = [
{"role": "user", "content": "### Context: the input message goes here. ### Response: "}
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.2,
top_k=50,
top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):])
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.