7B Chinese Chatbot trained based on LLama2-base 7B (Pure SFT Full Params Training)
Introduction
该模型为基于Llama2 base 7B 全参数SFT训练的中文模型。其目的是为了同RicardoLee/Llama2-base-7B-Chinese-50W-LoRA项目进行对比,判断LoRA效果合全参数训练效果的差异。
该模型训练Loss最终达到了0.7.
训练数据使用BELLE项目中采样的50万SFT数据进行SFT训练。
This model is a Chinese chat model based on Llama2 base 7B, trained with full-parameter SFT. Its purpose is to facilitate a comparison with the project RicardoLee/Llama2-base-7B-Chinese-50W-LoRA and assess the performance between LoRA and full-parameter training.
The final batch loss reached 0.7 during the training.
The training data is sampled from BELLE project, which consists of 500,000 SFT samples.
Train Detail
一些训练上的细节:
- 训练框架:该模型采用全参数SFT训练
- Tokenizer:该模型使用了Chinese-Alpaca-Plus模型的tokenizer.model。这是因为LLama2本身的tokenizer.model同LLama1是一摸一样的。因此理论上可以完全复用Chinese-LLaMa项目的tokenizer而不会产生如何错位问题。
- 训练参数:LR: 2e-4, Warmup ratio: 0.003.
- 训练资源:8卡V100。67 小时
- 训练起始的loss:参见Material
- 训练终止的loss:参见Material
Some details in training:
- Trianing Framework: This model adopts full-parameter SFT training.
- Tokenizer: This model utilizes the tokenizer.model from the Chinese-Alpaca-Plus model. The reason for this choice is that the tokenizer.model in LLama2 is identical to the one used in LLama1. As a result, it is theoretically feasible to entirely reuse the tokenizer from the Chinese-LLaMa project without encountering any issues related to token misalignment.
- Training Parameters: LR: 2e-4, Warmup ratio: 0.003.
- Training Resource: 8*V100, 67 hours.
- Initial Loss: Please refer to Material
- Train Loss: Please refer to Material
Inference
该模型依然采用stanford alpaca 模版。因此在测试时且别忘记添加开场白。开场白如下:
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n${Your Content}\n\n### Response:\n\n"
对于带上文的对话,开场白如下:
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\nHuman:${Previous Human Content}\nAssistant:${Previous Assistance Content}\nHuman:${Your Question}\n\n### Response:\n\n"
This model still using the Stanford Alpaca template. Therefore, don't forget to add prologue template. The prologue template is:
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n${Your Content}\n\n### Response:\n\n"
For dialogue with context, the prelogue template is:
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\nHuman:${Previous Human Content}\nAssistant:${Previous Machine Content}\nHuman:${Your Question}\n\n### Response:\n\n"
Licence
本仓库的模型依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循LLama2MODEL LICENCE。
This repository's models are open-sourced under the Apache-2.0 license, and their weight usage must adhere to LLama2 MODEL LICENCE license.
Future Work
将会在近期逐步放出
- 更大SFT数据规模训练下的模型。
- 13B及以下的LLama2 同LLama2-chat的模型,以供大家对比。
I will release the following models:
- Models trained on larger data scale.
- Models trained on LLama2 and LLama2-chat (under the 13B, since I only have V100), for comparison.
- Downloads last month
- 4