metadata
license: apache-2.0
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/combined-train-drugtemist-dev-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/combined-train-drugtemist-dev-ner
type: Rodrigo1771/combined-train-drugtemist-dev-ner
config: CombinedTrainDrugTEMISTDevNER
split: validation
args: CombinedTrainDrugTEMISTDevNER
metrics:
- name: Precision
type: precision
value: 0.09532555790247038
- name: Recall
type: recall
value: 0.9540441176470589
- name: F1
type: f1
value: 0.17333222008850296
- name: Accuracy
type: accuracy
value: 0.7932840841995413
output
This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/combined-train-drugtemist-dev-ner dataset. It achieves the following results on the evaluation set:
- Loss: 1.0503
- Precision: 0.0953
- Recall: 0.9540
- F1: 0.1733
- Accuracy: 0.7933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9988 | 425 | 0.6611 | 0.0883 | 0.9292 | 0.1613 | 0.7850 |
0.3349 | 2.0 | 851 | 0.9204 | 0.0787 | 0.9301 | 0.1451 | 0.7551 |
0.1788 | 2.9988 | 1276 | 0.9545 | 0.0844 | 0.9329 | 0.1549 | 0.7645 |
0.1227 | 4.0 | 1702 | 1.0924 | 0.0885 | 0.9412 | 0.1618 | 0.7692 |
0.0856 | 4.9988 | 2127 | 1.0503 | 0.0953 | 0.9540 | 0.1733 | 0.7933 |
0.0597 | 6.0 | 2553 | 1.2642 | 0.0912 | 0.9449 | 0.1663 | 0.7788 |
0.0597 | 6.9988 | 2978 | 1.3262 | 0.0928 | 0.9485 | 0.1690 | 0.7829 |
0.0458 | 8.0 | 3404 | 1.3698 | 0.0926 | 0.9522 | 0.1688 | 0.7849 |
0.0343 | 8.9988 | 3829 | 1.4433 | 0.0907 | 0.9449 | 0.1655 | 0.7822 |
0.0292 | 9.9882 | 4250 | 1.4862 | 0.0914 | 0.9458 | 0.1667 | 0.7821 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1