|
--- |
|
license: apache-2.0 |
|
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es |
|
tags: |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Rodrigo1771/combined-train-drugtemist-dev-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: output |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Rodrigo1771/combined-train-drugtemist-dev-ner |
|
type: Rodrigo1771/combined-train-drugtemist-dev-ner |
|
config: CombinedTrainDrugTEMISTDevNER |
|
split: validation |
|
args: CombinedTrainDrugTEMISTDevNER |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.09532555790247038 |
|
- name: Recall |
|
type: recall |
|
value: 0.9540441176470589 |
|
- name: F1 |
|
type: f1 |
|
value: 0.17333222008850296 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7932840841995413 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output |
|
|
|
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/combined-train-drugtemist-dev-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0503 |
|
- Precision: 0.0953 |
|
- Recall: 0.9540 |
|
- F1: 0.1733 |
|
- Accuracy: 0.7933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9988 | 425 | 0.6611 | 0.0883 | 0.9292 | 0.1613 | 0.7850 | |
|
| 0.3349 | 2.0 | 851 | 0.9204 | 0.0787 | 0.9301 | 0.1451 | 0.7551 | |
|
| 0.1788 | 2.9988 | 1276 | 0.9545 | 0.0844 | 0.9329 | 0.1549 | 0.7645 | |
|
| 0.1227 | 4.0 | 1702 | 1.0924 | 0.0885 | 0.9412 | 0.1618 | 0.7692 | |
|
| 0.0856 | 4.9988 | 2127 | 1.0503 | 0.0953 | 0.9540 | 0.1733 | 0.7933 | |
|
| 0.0597 | 6.0 | 2553 | 1.2642 | 0.0912 | 0.9449 | 0.1663 | 0.7788 | |
|
| 0.0597 | 6.9988 | 2978 | 1.3262 | 0.0928 | 0.9485 | 0.1690 | 0.7829 | |
|
| 0.0458 | 8.0 | 3404 | 1.3698 | 0.0926 | 0.9522 | 0.1688 | 0.7849 | |
|
| 0.0343 | 8.9988 | 3829 | 1.4433 | 0.0907 | 0.9449 | 0.1655 | 0.7822 | |
|
| 0.0292 | 9.9882 | 4250 | 1.4862 | 0.0914 | 0.9458 | 0.1667 | 0.7821 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|