Rodrigo1771's picture
End of training
988fd5d verified
|
raw
history blame
3.05 kB
metadata
license: apache-2.0
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
tags:
  - token-classification
  - generated_from_trainer
datasets:
  - Rodrigo1771/distemist-ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Rodrigo1771/distemist-ner
          type: Rodrigo1771/distemist-ner
          config: DisTEMIST NER
          split: validation
          args: DisTEMIST NER
        metrics:
          - name: Precision
            type: precision
            value: 0.7938948817994033
          - name: Recall
            type: recall
            value: 0.8093121197941039
          - name: F1
            type: f1
            value: 0.8015293708724366
          - name: Accuracy
            type: accuracy
            value: 0.9767668584453568

output

This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/distemist-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1294
  • Precision: 0.7939
  • Recall: 0.8093
  • F1: 0.8015
  • Accuracy: 0.9768

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9988 425 0.0738 0.7233 0.7866 0.7536 0.9733
0.0996 2.0 851 0.0787 0.7364 0.8065 0.7698 0.9743
0.0458 2.9988 1276 0.0788 0.7715 0.8154 0.7929 0.9759
0.0279 4.0 1702 0.0922 0.7754 0.8112 0.7929 0.9757
0.0169 4.9988 2127 0.0994 0.7585 0.8163 0.7863 0.9744
0.0114 6.0 2553 0.1080 0.7766 0.8058 0.7909 0.9765
0.0114 6.9988 2978 0.1166 0.7792 0.8100 0.7943 0.9760
0.0079 8.0 3404 0.1294 0.7939 0.8093 0.8015 0.9768
0.0053 8.9988 3829 0.1340 0.7876 0.8105 0.7989 0.9766
0.0038 9.9882 4250 0.1367 0.7882 0.8098 0.7988 0.9767

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1