|
--- |
|
license: apache-2.0 |
|
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es |
|
tags: |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Rodrigo1771/distemist-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: output |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Rodrigo1771/distemist-ner |
|
type: Rodrigo1771/distemist-ner |
|
config: DisTEMIST NER |
|
split: validation |
|
args: DisTEMIST NER |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7938948817994033 |
|
- name: Recall |
|
type: recall |
|
value: 0.8093121197941039 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8015293708724366 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9767668584453568 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output |
|
|
|
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/distemist-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1294 |
|
- Precision: 0.7939 |
|
- Recall: 0.8093 |
|
- F1: 0.8015 |
|
- Accuracy: 0.9768 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9988 | 425 | 0.0738 | 0.7233 | 0.7866 | 0.7536 | 0.9733 | |
|
| 0.0996 | 2.0 | 851 | 0.0787 | 0.7364 | 0.8065 | 0.7698 | 0.9743 | |
|
| 0.0458 | 2.9988 | 1276 | 0.0788 | 0.7715 | 0.8154 | 0.7929 | 0.9759 | |
|
| 0.0279 | 4.0 | 1702 | 0.0922 | 0.7754 | 0.8112 | 0.7929 | 0.9757 | |
|
| 0.0169 | 4.9988 | 2127 | 0.0994 | 0.7585 | 0.8163 | 0.7863 | 0.9744 | |
|
| 0.0114 | 6.0 | 2553 | 0.1080 | 0.7766 | 0.8058 | 0.7909 | 0.9765 | |
|
| 0.0114 | 6.9988 | 2978 | 0.1166 | 0.7792 | 0.8100 | 0.7943 | 0.9760 | |
|
| 0.0079 | 8.0 | 3404 | 0.1294 | 0.7939 | 0.8093 | 0.8015 | 0.9768 | |
|
| 0.0053 | 8.9988 | 3829 | 0.1340 | 0.7876 | 0.8105 | 0.7989 | 0.9766 | |
|
| 0.0038 | 9.9882 | 4250 | 0.1367 | 0.7882 | 0.8098 | 0.7988 | 0.9767 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|