from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("RootYuan/opt-1.3b-alpaca")
model = AutoModelForCausalLM.from_pretrained("RootYuan/opt-1.3b-alpaca")

usage:

instruction = "Classify the following into animals, plants, and minerals"
input = "Oak tree, copper ore, elephant"

prompts_no_input = f"### Instruction:\n{instruction}\n\n### Response:"
prompts_with_input = f"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
prompts = prompts_no_input if input is None else prompts_with_input

inputs = tokenizer.encode(prompts, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=64)
ans = tokenizer.decode(outputs[0]).strip('</s>')[len(prompts):]
if input is None:
    print(f"Human: {instruction}")
else:
    print(f"Human: {instruction}\nInput: {input}")
print(f"Assistant: {ans}")

outputs:

Human: Classify the following into animals, plants, and minerals
Input: Oak tree, copper ore, elephant
Assistant: Oak tree: Plant
           Copper ore: Mineral
           Elephant: Animal
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.