metadata
language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
model-index:
- name: Sharif-wav2vec2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Corpus 6.1 (clean)
type: common_voice_6_1
config: clean
split: test
args:
language: fa
metrics:
- name: Test WER
type: wer
value: 6
Sharif-wav2vec2
Prior to the usage, you may need to install the below dependencies:
pip -q install pyctcdecode
python -m pip -q install pypi-kenlm
Then you can use it with:
import tensorflow
import torchaudio
import torch
import librosa
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
speech_array, sampling_rate = torchaudio.load("test.wav")
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(
np.asarray(speech_array),
sampling_rate,
processor.feature_extractor.sampling_rate)
features = processor(
speech_array,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True)
input_values = features.input_values
attention_mask = features.attention_mask
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
prediction = processor.batch_decode(logits.numpy()).text
print(prediction[0])
# تست
The base model fine-tuned on 108 hours of Commonvoice on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
Abstract
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
Usage
To transcribe Persian audio files the model can be used as a standalone acoustic model as follows:
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("SLPL/Sharif-wav2vec2")
model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
# load dummy dataset and read soundfiles
# ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
Evaluation
This code snippet shows how to evaluate facebook/wav2vec2-base-960h on LibriSpeech's "clean" and "other" test data.
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_pred(batch):
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
Result (WER):
"clean" | "other" |
---|---|
3.4 | 8.6 |