SLPL
/

Sharif-wav2vec2 / README.md
sadrasabouri's picture
Update README.md
60089f5
|
raw
history blame
5.38 kB
---
language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
#widget:
#- example_title: Librispeech sample 1
# src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
#- example_title: Librispeech sample 2
# src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: Sharif-wav2vec2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Corpus 6.1 (clean)
type: common_voice_6_1
config: clean
split: test
args:
language: fa
metrics:
- name: Test WER
type: wer
value: 6.0
#- task:
# name: Automatic Speech Recognition
# type: automatic-speech-recognition
# dataset:
# name: LibriSpeech (other)
# type: librispeech_asr
# config: other
# split: test
# args:
# language: en
# metrics:
# - name: Test WER
# type: wer
# value: 8.6
---
# Sharif-wav2vec2
Prior to the usage, you may need to install the below dependencies:
```shell
pip -q install pyctcdecode
python -m pip -q install pypi-kenlm
```
Then you can use it with:
```python
import tensorflow
import torchaudio
import torch
import librosa
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
speech_array, sampling_rate = torchaudio.load("test.wav")
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(
np.asarray(speech_array),
sampling_rate,
processor.feature_extractor.sampling_rate)
features = processor(
speech_array,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True)
input_values = features.input_values
attention_mask = features.attention_mask
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
prediction = processor.batch_decode(logits.numpy()).text
print(prediction[0])
# تست
```
The base model fine-tuned on 108 hours of Commonvoice on 16kHz sampled speech audio. When using the model
make sure that your speech input is also sampled at 16Khz.
# Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
# **Abstract**
<!--
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
-->
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
To transcribe Persian audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("SLPL/Sharif-wav2vec2")
model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
# load dummy dataset and read soundfiles
# ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_pred(batch):
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
|---|---|
| 3.4 | 8.6 |