Edit model card

NLLB-600m-swh_Latn-to-eng_Latn

This model is a fine-tuned version of facebook/nllb-200-distilled-600M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2490
  • Bleu: 31.1907
  • Gen Len: 34.464

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 7
  • total_train_batch_size: 14
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
2.8224 0.41 500 2.3121 8.4908 34.136
2.1656 0.83 1000 1.9451 14.9983 33.604
1.885 1.24 1500 1.7385 18.7049 33.928
1.6922 1.66 2000 1.6102 21.7399 33.648
1.5693 2.07 2500 1.5175 23.2299 34.912
1.4695 2.49 3000 1.4552 24.8572 32.612
1.4195 2.9 3500 1.3948 26.3956 33.56
1.3413 3.32 4000 1.3564 27.2599 32.824
1.3094 3.73 4500 1.3263 27.9728 33.42
1.2748 4.15 5000 1.3044 28.8956 33.56
1.227 4.56 5500 1.2844 29.8314 33.552
1.2255 4.97 6000 1.2692 30.4411 33.716
1.191 5.39 6500 1.2611 31.1336 34.432
1.1842 5.8 7000 1.2542 30.8819 33.716
1.1712 6.22 7500 1.2506 31.528 33.768
1.1606 6.63 8000 1.2490 31.1907 34.464

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.