|
---
|
|
library_name: transformers
|
|
license: mit
|
|
base_model: FacebookAI/xlm-roberta-large
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: xlm-roberta-large_product_classifier
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# xlm-roberta-large_product_classifier
|
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.3981
|
|
- Accuracy: 0.8169
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| No log | 1.0 | 490 | 0.8869 | 0.7423 |
|
|
| 1.3297 | 2.0 | 980 | 0.7796 | 0.7798 |
|
|
| 0.7265 | 3.0 | 1470 | 0.7592 | 0.7872 |
|
|
| 0.5509 | 4.0 | 1960 | 0.8112 | 0.7949 |
|
|
| 0.4258 | 5.0 | 2450 | 0.8498 | 0.7875 |
|
|
| 0.3307 | 6.0 | 2940 | 0.8326 | 0.8036 |
|
|
| 0.2702 | 7.0 | 3430 | 0.8833 | 0.8066 |
|
|
| 0.2078 | 8.0 | 3920 | 0.9260 | 0.8066 |
|
|
| 0.1571 | 9.0 | 4410 | 0.9800 | 0.8087 |
|
|
| 0.1242 | 10.0 | 4900 | 1.0725 | 0.8043 |
|
|
| 0.0962 | 11.0 | 5390 | 1.2147 | 0.7946 |
|
|
| 0.0857 | 12.0 | 5880 | 1.1705 | 0.8123 |
|
|
| 0.0667 | 13.0 | 6370 | 1.2551 | 0.8041 |
|
|
| 0.052 | 14.0 | 6860 | 1.2762 | 0.8184 |
|
|
| 0.0414 | 15.0 | 7350 | 1.3442 | 0.8115 |
|
|
| 0.0313 | 16.0 | 7840 | 1.3510 | 0.8130 |
|
|
| 0.0247 | 17.0 | 8330 | 1.3754 | 0.8133 |
|
|
| 0.0158 | 18.0 | 8820 | 1.3915 | 0.8135 |
|
|
| 0.0162 | 19.0 | 9310 | 1.3975 | 0.8186 |
|
|
| 0.0109 | 20.0 | 9800 | 1.3981 | 0.8169 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.48.0
|
|
- Pytorch 2.5.1+cu124
|
|
- Datasets 2.21.0
|
|
- Tokenizers 0.21.0
|
|
|