|
|
|
--- |
|
tags: |
|
- autotrain |
|
- tabular |
|
- classification |
|
- tabular-classification |
|
datasets: |
|
- dark-gbf-xgboost2/autotrain-data |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Tabular classification |
|
|
|
## Validation Metrics |
|
|
|
- logloss: 0.08323427141158712 |
|
- accuracy: 0.98 |
|
- mlogloss: 0.08323427141158712 |
|
- f1_macro: 0.8266666666666665 |
|
- f1_micro: 0.98 |
|
- f1_weighted: 0.9793333333333333 |
|
- precision_macro: 0.8666666666666666 |
|
- precision_micro: 0.98 |
|
- precision_weighted: 0.9833333333333333 |
|
- recall_macro: 0.8333333333333333 |
|
- recall_micro: 0.98 |
|
- recall_weighted: 0.98 |
|
- loss: 0.08323427141158712 |
|
|
|
## Best Params |
|
|
|
- learning_rate: 0.16433034910560887 |
|
- reg_lambda: 3.7914578973926436 |
|
- reg_alpha: 2.806649620056883e-07 |
|
- subsample: 0.7396301555452317 |
|
- colsample_bytree: 0.9137471530067593 |
|
- max_depth: 6 |
|
- early_stopping_rounds: 383 |
|
- n_estimators: 15000 |
|
- eval_metric: mlogloss |
|
|
|
## Usage |
|
|
|
```python |
|
import json |
|
import joblib |
|
import pandas as pd |
|
|
|
model = joblib.load('model.joblib') |
|
config = json.load(open('config.json')) |
|
|
|
features = config['features'] |
|
|
|
# data = pd.read_csv("data.csv") |
|
data = data[features] |
|
|
|
predictions = model.predict(data) # or model.predict_proba(data) |
|
|
|
# predictions can be converted to original labels using label_encoders.pkl |
|
|
|
``` |
|
|