AIMI FMs: A Collection of Foundation Models in Radiology

πŸ“ Paper β€’ πŸ€— Hugging Face β€’ 🧩 Github β€’ πŸͺ„ Project

✨ Latest News

🎬 Get Started

from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("StanfordAIMI/RadLLaMA-7b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/RadLLaMA-7b")

prompt = "Hi"
conv = [{"from": "human", "value": prompt}]
input_ids = tokenizer.apply_chat_template(conv, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(input_ids)
response = tokenizer.decode(outputs[0])
print(response)

✏️ Citation

@article{aimifms-2024,
  title={},
  author={},
  journal={arXiv preprint arXiv:xxxx.xxxxx},
  url={https://arxiv.org/abs/xxxx.xxxxx},
  year={2024}
}
Downloads last month
862
Safetensors
Model size
6.74B params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for StanfordAIMI/RadLLaMA-7b

Finetunes
1 model