VisFlamCat

VisFlamCat is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: Nitral-AI/Visual-LaylelemonMaidRP-7B
    #no parameters necessary for base model
  - model: flammenai/flammen15-gutenberg-DPO-v1-7B
    parameters:
      density: 0.5
      weight: 0.5
  - model: Eric111/CatunaLaserPi
    parameters:
      density: 0.5
      weight: 0.5

merge_method: ties
base_model: Nitral-AI/Visual-LaylelemonMaidRP-7B
parameters:
  normalize: false
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Stark2008/VisFlamCat"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 21.16
IFEval (0-Shot) 43.66
BBH (3-Shot) 32.88
MATH Lvl 5 (4-Shot) 6.57
GPQA (0-shot) 5.37
MuSR (0-shot) 14.68
MMLU-PRO (5-shot) 23.82
Downloads last month
22
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Stark2008/VisFlamCat

Evaluation results