metadata
base_model:
- nbeerbower/gemma2-gutenberg-9B
- UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3
- princeton-nlp/gemma-2-9b-it-SimPO
tags:
- merge
- mergekit
- lazymergekit
- nbeerbower/gemma2-gutenberg-9B
- UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3
- princeton-nlp/gemma-2-9b-it-SimPO
Gemma_Writer-9b
Gemma_Writer-9b is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: IlyaGusev/gemma-2-9b-it-abliterated
# No parameters necessary for base model
- model: nbeerbower/gemma2-gutenberg-9B
parameters:
density: 0.6
weight: 0.4
- model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3
parameters:
density: 0.53
weight: 0.3
- model: princeton-nlp/gemma-2-9b-it-SimPO
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: IlyaGusev/gemma-2-9b-it-abliterated
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "StoneLabs/Gemma_Writer-9b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])