|
--- |
|
base_model: |
|
- nbeerbower/gemma2-gutenberg-9B |
|
- UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 |
|
- princeton-nlp/gemma-2-9b-it-SimPO |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- nbeerbower/gemma2-gutenberg-9B |
|
- UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 |
|
- princeton-nlp/gemma-2-9b-it-SimPO |
|
--- |
|
|
|
# Gemma_Writer-9b |
|
|
|
Gemma_Writer-9b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [nbeerbower/gemma2-gutenberg-9B](https://huggingface.co/nbeerbower/gemma2-gutenberg-9B) |
|
* [UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) |
|
* [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: IlyaGusev/gemma-2-9b-it-abliterated |
|
# No parameters necessary for base model |
|
- model: nbeerbower/gemma2-gutenberg-9B |
|
parameters: |
|
density: 0.6 |
|
weight: 0.4 |
|
- model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 |
|
parameters: |
|
density: 0.53 |
|
weight: 0.3 |
|
- model: princeton-nlp/gemma-2-9b-it-SimPO |
|
parameters: |
|
density: 0.6 |
|
weight: 0.3 |
|
merge_method: dare_ties |
|
base_model: IlyaGusev/gemma-2-9b-it-abliterated |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "StoneLabs/Gemma_Writer-9b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |