metadata
library_name: transformers
language:
- ko
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1
model-index:
- name: Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1
results: []
Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1
This model is a fine-tuned version of openai/whisper-large-v3 on the Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5249
- Cer: 14.4500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 10
- eval_batch_size: 5
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
1.333 | 0.0548 | 64 | 0.9131 | 19.4136 |
1.1099 | 0.1096 | 128 | 0.7550 | 17.2538 |
0.9577 | 0.1643 | 192 | 0.6955 | 17.2038 |
0.9198 | 0.2191 | 256 | 0.6615 | 15.8003 |
0.7995 | 0.2739 | 320 | 0.6357 | 16.5130 |
0.7898 | 0.3287 | 384 | 0.6150 | 15.8066 |
0.7344 | 0.3835 | 448 | 0.6022 | 14.9533 |
0.7035 | 0.4383 | 512 | 0.5846 | 14.3594 |
0.6936 | 0.4930 | 576 | 0.5711 | 16.6193 |
0.6427 | 0.5478 | 640 | 0.5602 | 14.7063 |
0.6365 | 0.6026 | 704 | 0.5530 | 15.0095 |
0.6107 | 0.6574 | 768 | 0.5440 | 14.5813 |
0.596 | 0.7122 | 832 | 0.5379 | 15.2315 |
0.5831 | 0.7670 | 896 | 0.5357 | 15.1377 |
0.5542 | 0.8217 | 960 | 0.5308 | 15.0314 |
0.5675 | 0.8765 | 1024 | 0.5277 | 15.2252 |
0.532 | 0.9313 | 1088 | 0.5252 | 15.6722 |
0.5255 | 0.9861 | 1152 | 0.5249 | 14.4500 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu118
- Datasets 3.0.0
- Tokenizers 0.19.1