Svngoku/ReaderLM-v2-Q8_0-GGUF
This model was converted to GGUF format from jinaai/ReaderLM-v2
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -c 2048
VLLM Inference
# -*- coding: utf-8 -*-
"""Untitled64.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1hVqCTm6XLJmrOjkaIYLHXgOTg2ffnhue
"""
!pip install vllm
model_name = 'Svngoku/ReaderLM-v2-Q8_0-GGUF' # @param ["jinaai/ReaderLM-v2", "jinaai/reader-lm-1.5b", "Svngoku/ReaderLM-v2-Q8_0-GGUF"]
max_model_len = 256000 # @param {type:"integer"}
# @markdown ---
# @markdown ### SamplingParams:
top_k = 1 # @param {type:"integer"}
temperature = 0 # @param {type:"slider", min:0, max:1, step:0.1}
repetition_penalty = 1.05 # @param {type:"number"}
presence_penalty = 0.25 # @param {type:"slider", min:0, max:1, step:0.1}
max_tokens = 8192 # @param {type:"integer"}
# @markdown ---
from vllm import SamplingParams
sampling_params = SamplingParams(temperature=temperature, top_k=top_k, presence_penalty=presence_penalty, repetition_penalty=repetition_penalty, max_tokens=max_tokens)
print('sampling_params', sampling_params)
!wget https://huggingface.co/Svngoku/ReaderLM-v2-Q8_0-GGUF/resolve/main/readerlm-v2-q8_0.gguf
!wget https://huggingface.co/jinaai/ReaderLM-v2/resolve/main/tokenizer.json
!vllm serve /content/readerlm-v2-q8_0.gguf --tokenizer /content/tokenizer.json
from vllm import LLM
llm = LLM(
model="/content/readerlm-v2-q8_0.gguf",
max_model_len=max_model_len,
tokenizer='jinaai/ReaderLM-v2'
)
# @title ## Specify a URL as input{"run":"auto","vertical-output":true}
import re
import requests
from IPython.display import display, Markdown
def display_header(text):
display(Markdown(f'**{text}**'))
def display_rendered_md(text):
# for mimic "Reading mode" in Safari/Firefox
display(Markdown(text))
def display_content(text):
display(Markdown(text))
def get_html_content(url):
api_url = f'https://r.jina.ai/{url}'
headers = {'X-Return-Format': 'html'}
try:
response = requests.get(api_url, headers=headers, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
return f"error: {str(e)}"
def get_html_content(url):
api_url = f'https://r.jina.ai/{url}'
headers = {'X-Return-Format': 'html'}
try:
response = requests.get(api_url, headers=headers, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
return f"error: {str(e)}"
def create_prompt(text: str, tokenizer = None, instruction: str = None, schema: str = None) -> str:
"""
Create a prompt for the model with optional instruction and JSON schema.
Args:
text (str): The input HTML text
tokenizer: The tokenizer to use
instruction (str, optional): Custom instruction for the model
schema (str, optional): JSON schema for structured extraction
Returns:
str: The formatted prompt
"""
if not tokenizer:
tokenizer = llm.get_tokenizer()
if not instruction:
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
if schema:
instruction = 'Extract the specified information from a list of news threads and present it in a structured JSON format.'
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```"
else:
prompt = f"{instruction}\n```html\n{text}\n```"
messages = [
{
"role": "user",
"content": prompt,
}
]
return tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# (REMOVE <SCRIPT> to </script> and variations)
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML <STYLE> to </style> and variations)
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML <META> to </meta> and variations)
META_PATTERN = r'<[ ]*meta.*?>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML COMMENTS <!-- to --> and variations)
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>' # mach any char zero or more times
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
# (REMOVE HTML LINK <LINK> to </link> and variations)
LINK_PATTERN = r'<[ ]*link.*?>' # mach any char zero or more times
# (REPLACE base64 images)
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
# (REPLACE <svg> to </svg> and variations)
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)'
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
return re.sub(
SVG_PATTERN,
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
html,
flags=re.DOTALL,
)
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
def has_base64_images(text: str) -> bool:
base64_content_pattern = r'data:image/[^;]+;base64,[^"]+'
return bool(re.search(base64_content_pattern, text, flags=re.DOTALL))
def has_svg_components(text: str) -> bool:
return bool(re.search(SVG_PATTERN, text, flags=re.DOTALL))
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
html = re.sub(SCRIPT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(STYLE_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(META_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(COMMENT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
html = re.sub(LINK_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
if clean_svg:
html = replace_svg(html)
if clean_base64:
html = replace_base64_images(html)
return html
url = "https://news.ycombinator.com/" # @param {type:"string"}
print(f'We will use Jina Reader to fetch the **raw HTML** from: {url}')
html = get_html_content(url)
html = clean_html(html, clean_svg=True, clean_base64=True)
prompt = create_prompt(html)
result = llm.generate(prompt, sampling_params=sampling_params)[0].outputs[0].text.strip()
print(result)
import json
schema = {
"type": "object",
"properties": {
"title": {"type": "string", "description": "News thread title"},
"url": {"type": "string", "description": "Thread URL"},
"summary": {"type": "string", "description": "Article summary"},
"keywords": {"type": "list", "description": "Descriptive keywords"},
"author": {"type": "string", "description": "Thread author"},
"comments": {"type": "integer", "description": "Comment count"}
},
"required": ["title", "url", "date", "points", "author", "comments"]
}
prompt = create_prompt(html, schema=json.dumps(schema, indent=2))
result = llm.generate(prompt, sampling_params=sampling_params)[0].outputs[0].text.strip()
print(result)
from vllm.distributed.parallel_state import destroy_model_parallel, destroy_distributed_environment
import gc
import os
import torch
destroy_model_parallel()
destroy_distributed_environment()
del llm.llm_engine.model_executor.driver_worker
del llm.llm_engine.model_executor
del llm
gc.collect()
torch.cuda.empty_cache()
print(f"cuda memory: {torch.cuda.memory_allocated() // 1024 // 1024}MB")
- Downloads last month
- 65
Model tree for Svngoku/ReaderLM-v2-Q8_0-GGUF
Base model
jinaai/ReaderLM-v2