metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: firqaaa/indo-sentence-bert-base
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: >-
halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari
minggu tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu
atm bri bersamaan dengan buku the puppeteer dan sirkus pohon
- text: liverpool sukses di kandang tottenham
- text: >-
hai angga , untuk penerbitan tiket reschedule diharuskan melakukan
pembayaran dulu ya .
- text: sedih kalau umat diprovokasi supaya saling membenci .
- text: >-
berada di lokasi strategis jalan merdeka , berseberangan agak ke samping
bandung indah plaza , tapat sebelah kanan jalan sebelum traffic light ,
parkir mobil cukup luas . saus bumbu dan lain-lain disediakan cukup
lengkap di lantai bawah . di lantai atas suasana agak sepi . bakso cukup
enak dan terjangkau harga nya tetapi kuah relatif kurang dan porsi tidak
terlalu besar
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8181818181818182
name: Accuracy
- type: precision
value: 0.8181818181818182
name: Precision
- type: recall
value: 0.8181818181818182
name: Recall
- type: f1
value: 0.8181818181818182
name: F1
SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa
Author
Kelompok 3 :
- Muhammad Guntur Arfianto (20/459272/PA/19933)
- Putri Iqlima Miftahuddini (23/531392/NUGM/01467)
- Alan Kurniawan (23/531301/NUGM/01382)
This is a SetFit model that can be used for Text Classification. This SetFit model uses firqaaa/indo-sentence-bert-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
The dataset that was used for fine-tuning this model is indonlu, specifically its subset, SmSa dataset.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: firqaaa/indo-sentence-bert-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
2 |
|
Evaluation
Metrics
Label | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
all | 0.8182 | 0.8182 | 0.8182 | 0.8182 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-32-shot")
# Run inference
preds = model("liverpool sukses di kandang tottenham")
Training Details
Training Set Metrics
Label | Training Sample Count |
---|---|
0 | 32 |
1 | 32 |
2 | 32 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (6, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results (Epoch-to-epoch)
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
1.0 | 384 | 0.0002 | 0.1683 |
2.0 | 768 | 0.0001 | 0.1732 |
3.0 | 1152 | 0.0001 | 0.1739 |
4.0 | 1536 | 0.0 | 0.174 |
5.0 | 1920 | 0.0001 | 0.1765 |
6.0 | 2304 | 0.0 | 0.1767 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}