English
IP-Adapter / README.md
Zhiminli's picture
Update README.md
27a0ef5 verified
---
license: other
license_name: tencent-hunyuan-community
license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt
language:
- en
---
## Using HunyuanDiT IP-Adapter
### Instructions
The dependencies and installation are basically the same as the base model, and we use the module weights for training.
Download the model using the following commands:
```bash
cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
# We recommend using module weights as the base model for IP-Adapter inference, as our provided pretrained weights are trained on them.
huggingface-cli download Tencent-Hunyuan/IP-Adapter/ipa.pt --local-dir ./ckpts/t2i/model
huggingface-cli download Tencent-Hunyuan/IP-Adapter/clip_img_encoder.pt --local-dir ./ckpts/t2i/model/clip_img_encoder
# Quick start
python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/tiger.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module
```
Examples of ref input and IP-Adapter results are as follows:
<table>
<tr>
<td colspan="3" align="center">Ref Input</td>
</tr>
<tr>
<td align="center"><img src="asset/input/tiger.png" alt="Image 0" width="200"/></td>
<td align="center"><img src="asset/input/beauty.png" alt="Image 1" width="200"/></td>
<td align="center"><img src="asset/input/xunyicao.png" alt="Image 2" width="200"/></td>
</tr>
<tr>
<td colspan="3" align="center">IP-Adapter Output</td>
</tr>
<tr>
<td align="center">一只老虎在奔跑。<br>(A tiger running.) </td>
<td align="center">一个卡通美女,抱着一只小猪。<br>(A cartoon beauty holding a little pig.) </td>
<td align="center">一片紫色薰衣草地。<br>(A purple lavender field.) </td>
</tr>
<tr>
<td align="center"><img src="asset/output/tiger_run.png" alt="Image 3" width="200"/></td>
<td align="center"><img src="asset/output/beauty_pig.png" alt="Image 4" width="200"/></td>
<td align="center"><img src="asset/output/xunyicao_res.png" alt="Image 5" width="200"/></td>
</tr>
<tr>
<td align="center">一只老虎在看书。<br>(A tiger is reading a book.) </td>
<td align="center">一个卡通美女,穿着绿色衣服。<br>(A cartoon beauty wearing green clothes.) </td>
<td align="center">一片紫色薰衣草地,有一只可爱的小狗。<br>(A purple lavender field with a cute puppy.) </td>
</tr>
<tr>
<td align="center"><img src="asset/output/tiger_book.png" alt="Image 3" width="200"/></td>
<td align="center"><img src="asset/output/beauty_green_cloth.png" alt="Image 4" width="200"/></td>
<td align="center"><img src="asset/output/xunyicao_dog.png" alt="Image 5" width="200"/></td>
</tr>
<tr>
<td align="center">一只老虎在咆哮。<br>(A tiger is roaring.) </td>
<td align="center">一个卡通美女,戴着墨镜。<br>(A cartoon beauty wearing sunglasses.) </td>
<td align="center">水墨风格,一片紫色薰衣草地。<br>(Ink style. A purple lavender field.) </td>
</tr>
<tr>
<td align="center"><img src="asset/output/tiger_roar.png" alt="Image 3" width="200"/></td>
<td align="center"><img src="asset/output/beauty_glass.png" alt="Image 4" width="200"/></td>
<td align="center"><img src="asset/output/xunyicao_style.png" alt="Image 5" width="200"/></td>
</tr>
</table>
### Training
We provide base model weights for IP-Adapter training, you can use `module` weights for IP-Adapter training.
Here is an example, we load the `module` weights into the main model and conduct IP-Adapter training.
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
```bash
task_flag="IP_Adapter" # the task flag is used to identify folders. # checkpoint root for resume
index_file=path/to/your/index_file
results_dir=./log_EXP # save root for results
batch_size=1 # training batch size
image_size=1024 # training image resolution
grad_accu_steps=1 # gradient accumulation
warmup_num_steps=0 # warm-up steps
lr=0.0001 # learning rate
ckpt_every=10 # create a ckpt every a few steps.
ckpt_latest_every=10000 # create a ckpt named `latest.pt` every a few steps.
ckpt_every_n_epoch=2 # create a ckpt every a few epochs.
epochs=8 # total training epochs
PYTHONPATH=. \
sh $(dirname "$0")/run_g_ipadapter.sh \
--task-flag ${task_flag} \
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \
--predict-type v_prediction \
--multireso \
--reso-step 64 \
--uncond-p 0.22 \
--uncond-p-t5 0.22\
--uncond-p-img 0.05\
--index-file ${index_file} \
--random-flip \
--lr ${lr} \
--batch-size ${batch_size} \
--image-size ${image_size} \
--global-seed 999 \
--grad-accu-steps ${grad_accu_steps} \
--warmup-num-steps ${warmup_num_steps} \
--use-flash-attn \
--use-fp16 \
--extra-fp16 \
--results-dir ${results_dir} \
--resume\
--resume-module-root ckpts/t2i/model/pytorch_model_module.pt \
--epochs ${epochs} \
--ckpt-every ${ckpt_every} \
--ckpt-latest-every ${ckpt_latest_every} \
--ckpt-every-n-epoch ${ckpt_every_n_epoch} \
--log-every 10 \
--deepspeed \
--use-zero-stage 2 \
--gradient-checkpointing \
--no-strict \
--training-parts ipadapter \
--is-ipa True \
--resume-ipa True \
--resume-ipa-root ckpts/t2i/model/ipa.pt \
"$@"
```
Recommended parameter settings
| Parameter | Description | Recommended Parameter Value | Note|
|:---------------:|:---------:|:---------------------------------------------------:|:--:|
| `--batch-size` | Training batch size | 1 | Depends on GPU memory|
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
| `--lr` | Learning rate | 0.0001 | - |
| `--training-parts` | be trained parameters when training IP-Adapter | ipadapter | - |
| `--is-ipa` | training IP-Adapter or not | True | - |
| `--resume-ipa-root` | resume ipa model or not when training | ipa model path | - |
### Inference
Use the following command line for inference.
a. Use the parameter float i-scale to specify the weight of IP-Adapter reference image. The bigger parameter indicates more relativity to reference image.
```bash
python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/beach.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module
```