|
--- |
|
license: other |
|
license_name: tencent-hunyuan-community |
|
license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt |
|
language: |
|
- en |
|
--- |
|
|
|
## Using HunyuanDiT IP-Adapter |
|
|
|
|
|
### Instructions |
|
|
|
The dependencies and installation are basically the same as the base model, and we use the module weights for training. |
|
Download the model using the following commands: |
|
|
|
```bash |
|
cd HunyuanDiT |
|
# Use the huggingface-cli tool to download the model. |
|
# We recommend using module weights as the base model for IP-Adapter inference, as our provided pretrained weights are trained on them. |
|
huggingface-cli download Tencent-Hunyuan/IP-Adapter/ipa.pt --local-dir ./ckpts/t2i/model |
|
huggingface-cli download Tencent-Hunyuan/IP-Adapter/clip_img_encoder.pt --local-dir ./ckpts/t2i/model/clip_img_encoder |
|
|
|
# Quick start |
|
python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/tiger.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module |
|
``` |
|
|
|
Examples of ref input and IP-Adapter results are as follows: |
|
<table> |
|
<tr> |
|
<td colspan="3" align="center">Ref Input</td> |
|
</tr> |
|
|
|
|
|
|
|
|
|
|
|
<tr> |
|
<td align="center"><img src="asset/input/tiger.png" alt="Image 0" width="200"/></td> |
|
<td align="center"><img src="asset/input/beauty.png" alt="Image 1" width="200"/></td> |
|
<td align="center"><img src="asset/input/xunyicao.png" alt="Image 2" width="200"/></td> |
|
|
|
</tr> |
|
|
|
<tr> |
|
<td colspan="3" align="center">IP-Adapter Output</td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center">一只老虎在奔跑。<br>(A tiger running.) </td> |
|
<td align="center">一个卡通美女,抱着一只小猪。<br>(A cartoon beauty holding a little pig.) </td> |
|
<td align="center">一片紫色薰衣草地。<br>(A purple lavender field.) </td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center"><img src="asset/output/tiger_run.png" alt="Image 3" width="200"/></td> |
|
<td align="center"><img src="asset/output/beauty_pig.png" alt="Image 4" width="200"/></td> |
|
<td align="center"><img src="asset/output/xunyicao_res.png" alt="Image 5" width="200"/></td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center">一只老虎在看书。<br>(A tiger is reading a book.) </td> |
|
<td align="center">一个卡通美女,穿着绿色衣服。<br>(A cartoon beauty wearing green clothes.) </td> |
|
<td align="center">一片紫色薰衣草地,有一只可爱的小狗。<br>(A purple lavender field with a cute puppy.) </td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center"><img src="asset/output/tiger_book.png" alt="Image 3" width="200"/></td> |
|
<td align="center"><img src="asset/output/beauty_green_cloth.png" alt="Image 4" width="200"/></td> |
|
<td align="center"><img src="asset/output/xunyicao_dog.png" alt="Image 5" width="200"/></td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center">一只老虎在咆哮。<br>(A tiger is roaring.) </td> |
|
<td align="center">一个卡通美女,戴着墨镜。<br>(A cartoon beauty wearing sunglasses.) </td> |
|
<td align="center">水墨风格,一片紫色薰衣草地。<br>(Ink style. A purple lavender field.) </td> |
|
</tr> |
|
<tr> |
|
<td align="center"><img src="asset/output/tiger_roar.png" alt="Image 3" width="200"/></td> |
|
<td align="center"><img src="asset/output/beauty_glass.png" alt="Image 4" width="200"/></td> |
|
<td align="center"><img src="asset/output/xunyicao_style.png" alt="Image 5" width="200"/></td> |
|
</tr> |
|
|
|
|
|
</table> |
|
|
|
|
|
### Training |
|
|
|
We provide base model weights for IP-Adapter training, you can use `module` weights for IP-Adapter training. |
|
|
|
Here is an example, we load the `module` weights into the main model and conduct IP-Adapter training. |
|
|
|
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter. |
|
|
|
```bash |
|
task_flag="IP_Adapter" # the task flag is used to identify folders. # checkpoint root for resume |
|
index_file=path/to/your/index_file |
|
results_dir=./log_EXP # save root for results |
|
batch_size=1 # training batch size |
|
image_size=1024 # training image resolution |
|
grad_accu_steps=1 # gradient accumulation |
|
warmup_num_steps=0 # warm-up steps |
|
lr=0.0001 # learning rate |
|
ckpt_every=10 # create a ckpt every a few steps. |
|
ckpt_latest_every=10000 # create a ckpt named `latest.pt` every a few steps. |
|
ckpt_every_n_epoch=2 # create a ckpt every a few epochs. |
|
epochs=8 # total training epochs |
|
|
|
PYTHONPATH=. \ |
|
sh $(dirname "$0")/run_g_ipadapter.sh \ |
|
--task-flag ${task_flag} \ |
|
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \ |
|
--predict-type v_prediction \ |
|
--multireso \ |
|
--reso-step 64 \ |
|
--uncond-p 0.22 \ |
|
--uncond-p-t5 0.22\ |
|
--uncond-p-img 0.05\ |
|
--index-file ${index_file} \ |
|
--random-flip \ |
|
--lr ${lr} \ |
|
--batch-size ${batch_size} \ |
|
--image-size ${image_size} \ |
|
--global-seed 999 \ |
|
--grad-accu-steps ${grad_accu_steps} \ |
|
--warmup-num-steps ${warmup_num_steps} \ |
|
--use-flash-attn \ |
|
--use-fp16 \ |
|
--extra-fp16 \ |
|
--results-dir ${results_dir} \ |
|
--resume\ |
|
--resume-module-root ckpts/t2i/model/pytorch_model_module.pt \ |
|
--epochs ${epochs} \ |
|
--ckpt-every ${ckpt_every} \ |
|
--ckpt-latest-every ${ckpt_latest_every} \ |
|
--ckpt-every-n-epoch ${ckpt_every_n_epoch} \ |
|
--log-every 10 \ |
|
--deepspeed \ |
|
--use-zero-stage 2 \ |
|
--gradient-checkpointing \ |
|
--no-strict \ |
|
--training-parts ipadapter \ |
|
--is-ipa True \ |
|
--resume-ipa True \ |
|
--resume-ipa-root ckpts/t2i/model/ipa.pt \ |
|
"$@" |
|
|
|
``` |
|
|
|
Recommended parameter settings |
|
|
|
| Parameter | Description | Recommended Parameter Value | Note| |
|
|:---------------:|:---------:|:---------------------------------------------------:|:--:| |
|
| `--batch-size` | Training batch size | 1 | Depends on GPU memory| |
|
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - | |
|
| `--lr` | Learning rate | 0.0001 | - | |
|
| `--training-parts` | be trained parameters when training IP-Adapter | ipadapter | - | |
|
| `--is-ipa` | training IP-Adapter or not | True | - | |
|
| `--resume-ipa-root` | resume ipa model or not when training | ipa model path | - | |
|
|
|
|
|
### Inference |
|
Use the following command line for inference. |
|
|
|
a. Use the parameter float i-scale to specify the weight of IP-Adapter reference image. The bigger parameter indicates more relativity to reference image. |
|
```bash |
|
python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/beach.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module |
|
``` |
|
|
|
|