Edit model card

A fine-tuned version of the Qwen/Qwen1.5-0.5B model, the data set used is alpaca_gpt4_data_zh.json

· Call example

import os

from transformers import AutoModelForCausalLM, AutoTokenizer

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
]

device = "cuda"  # the device to load the model onto
model_path = os.path.dirname(__file__)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
response = ''
if __name__ == '__main__':

    while True:
        # prompt = "Give me a short introduction to large language model."
        prompt = input("input:")
        messages.append({"role": "user", "content": prompt})
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(device)

        generated_ids = model.generate(
            model_inputs.input_ids,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        print(response)
        messages.append({"role": "system", "content": response}, )

Downloads last month
4
Safetensors
Model size
464M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.