|
--- |
|
license: other |
|
license_name: license |
|
license_link: https://huggingface.co/Qwen/Qwen1.5-0.5B/blob/main/LICENSE |
|
--- |
|
# A fine-tuned version of the Qwen/Qwen1.5-0.5B model, the data set used is alpaca_gpt4_data_zh.json |
|
· Call example |
|
|
|
|
|
``` |
|
import os |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
] |
|
|
|
device = "cuda" # the device to load the model onto |
|
model_path = os.path.dirname(__file__) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
response = '' |
|
if __name__ == '__main__': |
|
|
|
while True: |
|
# prompt = "Give me a short introduction to large language model." |
|
prompt = input("input:") |
|
messages.append({"role": "user", "content": prompt}) |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(response) |
|
messages.append({"role": "system", "content": response}, ) |
|
|
|
|
|
``` |