Terps's picture
End of training
0c551ce
|
raw
history blame
3.2 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan-v2
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan-v2
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.82

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7819
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.286 1.0 113 2.2792 0.26
2.1863 2.0 226 2.1408 0.34
1.9386 3.0 339 1.8744 0.48
1.6908 4.0 452 1.6502 0.57
1.5259 5.0 565 1.4149 0.72
1.1279 6.0 678 1.2700 0.62
1.2204 7.0 791 0.9902 0.75
0.861 8.0 904 0.8020 0.8
0.8153 9.0 1017 0.7291 0.8
0.3983 10.0 1130 0.7304 0.8
0.2209 11.0 1243 0.6960 0.79
0.2523 12.0 1356 0.5783 0.83
0.1267 13.0 1469 0.5613 0.83
0.0468 14.0 1582 0.7976 0.8
0.025 15.0 1695 0.8478 0.81
0.0158 16.0 1808 0.7448 0.8
0.0706 17.0 1921 0.7183 0.83
0.0096 18.0 2034 0.7532 0.82
0.0076 19.0 2147 0.7907 0.81
0.0354 20.0 2260 0.7120 0.83
0.0063 21.0 2373 0.7525 0.83
0.0055 22.0 2486 0.7647 0.82
0.0049 23.0 2599 0.7945 0.82
0.0048 24.0 2712 0.7982 0.82
0.0321 25.0 2825 0.7819 0.82

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1