FineTuned-hindi-to-english-V8

This model is a fine-tuned version of Helsinki-NLP/opus-mt-hi-en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4699
  • Rouge1: 77.4859
  • Rouge2: 54.5463
  • Rougel: 70.7586
  • Rougelsum: 72.9591
  • Gen Len: 80.2678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.2542 1.0 750 2.4128 66.5333 38.7744 58.3682 61.5066 77.9543
2.2929 2.0 1500 2.0835 70.0324 43.5622 62.3036 65.2299 79.0161
2.0351 3.0 2250 1.8982 72.069 46.4931 64.6929 67.3732 80.1859
1.7712 4.0 3000 1.7791 73.5869 48.6666 66.3649 68.8242 79.9375
1.6431 5.0 3750 1.6935 74.5655 50.0947 67.4126 69.8943 80.2959
1.4994 6.0 4500 1.6316 75.3132 51.2895 68.3122 70.7019 80.1347
1.4154 7.0 5250 1.5856 75.9486 52.1892 69.0828 71.4087 80.0847
1.333 8.0 6000 1.5516 76.2849 52.724 69.4646 71.7547 80.0536
1.2793 9.0 6750 1.5234 76.7711 53.4504 69.9626 72.215 80.2093
1.2219 10.0 7500 1.5043 76.9627 53.7785 70.2119 72.4254 80.1563
1.196 11.0 8250 1.4870 77.2081 54.1476 70.4764 72.681 80.4921
1.1612 12.0 9000 1.4771 77.4156 54.445 70.7305 72.9198 80.2194
1.1388 13.0 9750 1.4715 77.4179 54.4518 70.6541 72.8583 80.2815
1.1277 14.0 10500 1.4699 77.4859 54.5463 70.7586 72.9591 80.2678

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.0
  • Tokenizers 0.13.2
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.