TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
VMWare's open-llama-7B-open-instruct GPTQ
These files are GPTQ 4bit model files for VMWare's open-llama-7B-open-instruct.
It is the result of quantising to 4bit using GPTQ-for-LLaMa.
Repositories available
- 4-bit GPTQ models for GPU inference
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference
- Unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template
Standard Alpaca:
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: prompt
### Response:"
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/open-llama-7b-open-instruct-GPTQ
. - Click Download.
- The model will start downloading. Once it's finished it will say "Done"
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
open-llama-7b-open-instruct-GPTQ
- The model will automatically load, and is now ready for use!
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to set GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
How to use this GPTQ model from Python code
First make sure you have AutoGPTQ installed:
pip install auto-gptq
Then try the following example code:
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import argparse
model_name_or_path = "TheBloke/open-llama-7b-open-instruct-GPTQ"
model_basename = "open-llama-7B-open-instruct-GPTQ-4bit-128g.no-act.order"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
device="cuda:0",
use_triton=use_triton,
quantize_config=None)
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)
prompt = "Tell me about AI"
prompt_template=f'''### Human: {prompt}
### Assistant:'''
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
Provided files
open-llama-7B-open-instruct-GPTQ-4bit-128g.no-act.order.safetensors
This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
open-llama-7B-open-instruct-GPTQ-4bit-128g.no-act.order.safetensors
- Works with AutoGPTQ in CUDA or Triton modes.
- Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
- Works with text-generation-webui, including one-click-installers.
- Parameters: Groupsize = 128. Act Order / desc_act = False.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 闃挎槑, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikie艂, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: VMWare's open-llama-7B-open-instruct
VMware/open-llama-7B-open-instruct
Instruction-tuned version of the fully trained Open LLama 7B model. The model is open for COMMERCIAL USE.
NOTE : The model was trained using the Alpaca prompt template
License
- Commercially Viable
- Instruction dataset, VMware/open-instruct-v1-oasst-dolly-hhrlhf is under cc-by-sa-3.0
- Language Model, (openlm-research/open_llama_7b) is under apache-2.0
Nomenclature
- Model : Open-llama
- Model Size: 7B parameters
- Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf)
Use in Transformers
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'VMware/open-llama-7B-open-instruct'
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype= torch.float16, device_map = 'sequential')
prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
prompt= 'Explain in simple terms how the attention mechanism of a transformer model works'
inputt = prompt_template.format(instruction= prompt)
input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
output1 = model.generate(input_ids, max_length=512)
input_length = input_ids.shape[1]
output1 = output1[:, input_length:]
output= tokenizer.decode(output1[0])
print(output)
'''
Attention is a mechanism used in deep learning models, such as transformer models, to capture global dependencies between different parts of the input. In a transformer model, the attention mechanism works by computing a weighted sum of the input vectors and then applying a non-linear activation function to the result.
The attention mechanism in a transformer model works in two steps:
1. Query-Key Mapping: First, the input sequence is divided into two parts: the query vector and the key vector. The query vector represents the input at the current position, and the key vector represents the input at a previous position.
2. Attention Weight Calculation: Second, the attention weights are calculated using the dot product between the query vector and each key vector. The attention weights represent the importance of the input at the previous position to the current position.
The attention weights are then used to compute the attention score for each input element. The attention score represents the relevance of the input element to the current position.
The attention mechanism in a transformer model is designed to capture global dependencies between different parts of the input. By attending to input elements from different positions, the model can learn to understand the relationships between different parts of the input. This allows the model to perform more complex tasks, such as understanding the relationships between words in a sentence or pixels in an image.</s>
'''
Finetuning details
The finetuning scripts will be available in our RAIL Github Repository
Evaluation
TODO
- Downloads last month
- 12