metadata
license: apache-2.0
language:
- fr
- it
- de
- es
- en
- zh
inference: false
Model Card for Mobius-12B-base-m1
The Mobius-12B-base-m1 Large Language Model (LLM) is a pretrained model based on RWKV v5 arch. We use 0.01B tokens to post train this model for alignment the benchmark.
Warning
This repo contains weights that are not compatible with Hugging Face transformers library yet. But you can try thisPR as well. RWKV runner or AI00 server also work.
Instruction|Chat format
This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
The template used to build a prompt for the Instruct model is defined as follows:
User: {Instruction|prompt}\n\nAssistant:
Run the model
Need to install this PR pip install -e git://github.com/BBuf/transformers.git
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("TimeMobius/Mobius-12B-base-m1", torch_dtype=torch.float16).to(0)
tokenizer = AutoTokenizer.from_pretrained("TimeMobius/Mobius-12B-base-m1", trust_remote_code=True)
text = "x"
prompt = f'Question: {text.strip()}\n\nAnswer:'
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
Limitations
The Mobius base m1 is the base model can be easily fine-tuned to achieve compelling performance.
Benchmark
Mobius-12B-base-m1 | |
---|---|
lambda ppl | 3.41 |
lambda | 0.72 |
piqa | 0.78 |
hellaswag 10 shots | 0.72 |
winogrande | 0.68 |
arc_challenge 25shots | 0.47 |
arc_easy | 0.73 |
openbookqa | 0.40 |
sciq | 0.93 |