multibert_1310seed7 / README.md
Tommert25's picture
End of training
ab039c7
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: multibert_1310seed7
    results: []

multibert_1310seed7

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4338
  • Precisions: 0.8841
  • Recall: 0.8144
  • F-measure: 0.8437
  • Accuracy: 0.9402

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 7
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.4441 1.0 236 0.2809 0.8700 0.7020 0.7222 0.9118
0.2161 2.0 472 0.2575 0.8741 0.7653 0.7818 0.9250
0.1277 3.0 708 0.2644 0.8331 0.8115 0.8175 0.9299
0.0891 4.0 944 0.2614 0.8671 0.8120 0.8341 0.9390
0.0559 5.0 1180 0.3259 0.8806 0.7923 0.8279 0.9332
0.0322 6.0 1416 0.3770 0.8807 0.8064 0.8333 0.9373
0.0241 7.0 1652 0.4548 0.8430 0.8213 0.8223 0.9323
0.0162 8.0 1888 0.3705 0.8493 0.8239 0.8343 0.9405
0.0099 9.0 2124 0.4498 0.8463 0.8094 0.8245 0.9369
0.0069 10.0 2360 0.4445 0.8606 0.8141 0.8328 0.9381
0.0062 11.0 2596 0.4429 0.8880 0.8075 0.8405 0.9383
0.0045 12.0 2832 0.4496 0.8794 0.8017 0.8322 0.9393
0.0041 13.0 3068 0.4338 0.8841 0.8144 0.8437 0.9402
0.0029 14.0 3304 0.4401 0.8850 0.8135 0.8437 0.9400

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1