|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: multibertfinetuned2408 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multibertfinetuned2408 |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3350 |
|
- Precision: 0.7395 |
|
- Recall: 0.7408 |
|
- F1: 0.7401 |
|
- Accuracy: 0.9041 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 236 | 0.3641 | 0.6769 | 0.6472 | 0.6617 | 0.8806 | |
|
| No log | 2.0 | 472 | 0.3733 | 0.7173 | 0.6741 | 0.6950 | 0.8906 | |
|
| 0.429 | 3.0 | 708 | 0.3350 | 0.7395 | 0.7408 | 0.7401 | 0.9041 | |
|
| 0.429 | 4.0 | 944 | 0.4290 | 0.7572 | 0.7279 | 0.7422 | 0.9030 | |
|
| 0.1313 | 5.0 | 1180 | 0.4485 | 0.7432 | 0.7332 | 0.7381 | 0.9007 | |
|
| 0.1313 | 6.0 | 1416 | 0.4799 | 0.7785 | 0.7425 | 0.7601 | 0.9100 | |
|
| 0.0504 | 7.0 | 1652 | 0.5249 | 0.7875 | 0.7461 | 0.7662 | 0.9103 | |
|
| 0.0504 | 8.0 | 1888 | 0.5146 | 0.7863 | 0.7513 | 0.7684 | 0.9120 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|