leaderboard-pr-bot's picture
Adding Evaluation Results
65cf0cb verified
|
raw
history blame
5.27 kB
metadata
language:
  - en
license: mit
datasets:
  - UCLA-AGI/SPIN_iter0
pipeline_tag: text-generation
model-index:
  - name: test0
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 63.65
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.44
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 61.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 50.48
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.98
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 36.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=UCLA-AGI/test0
          name: Open LLM Leaderboard

Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335)

zephyr-7b-sft-full-spin-iter0

This model is a self-play fine-tuned model at iteration 0 from alignment-handbook/zephyr-7b-sft-full using synthetic data based on on the HuggingFaceH4/ultrachat_200k dataset.

Model Details

Model Description

  • Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
  • Language(s) (NLP): Primarily English
  • License: MIT
  • Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • optimizer: RMSProp
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 62.37
ARC (25-shot) 63.65
HellaSwag (10-shot) 84.44
MMLU (5-shot) 61.01
TruthfulQA (0-shot) 50.48
Winogrande (5-shot) 77.98
GSM8K (5-shot) 36.69

Citation

@misc{chen2024selfplay,
      title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models}, 
      author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
      year={2024},
      eprint={2401.01335},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 62.37
AI2 Reasoning Challenge (25-Shot) 63.65
HellaSwag (10-Shot) 84.44
MMLU (5-Shot) 61.01
TruthfulQA (0-shot) 50.48
Winogrande (5-shot) 77.98
GSM8k (5-shot) 36.69