Varun53's picture
End of training
d584a04 verified
metadata
license: mit
base_model: openai-community/roberta-large-openai-detector
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: openai-roberta-large-AI-detection
    results: []

openai-roberta-large-AI-detection

This model is a fine-tuned version of openai-community/roberta-large-openai-detector on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5761
  • Accuracy: 0.7308
  • Recall: 0.7513
  • Precision: 0.7595
  • F1: 0.7554

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.6973 1.0 197 0.5936 0.7071 0.9652 0.6612 0.7848
0.658 2.0 394 0.5761 0.7308 0.7513 0.7595 0.7554
0.4746 3.0 591 0.6044 0.7071 0.8690 0.6857 0.7665
0.3514 4.0 788 0.7278 0.7293 0.8636 0.7099 0.7793
0.2263 5.0 985 1.2186 0.7071 0.8636 0.6872 0.7654

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2