metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetune-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.36967418546365916
- name: Recall
type: recall
value: 0.3705365153418267
- name: F1
type: f1
value: 0.37010484810466887
- name: Accuracy
type: accuracy
value: 0.7865868016718667
bert-finetune-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0722
- Precision: 0.3697
- Recall: 0.3705
- F1: 0.3701
- Accuracy: 0.7866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0501 | 1.0 | 878 | 0.0776 | 0.3631 | 0.3639 | 0.3635 | 0.7850 |
0.0292 | 2.0 | 1756 | 0.0760 | 0.3690 | 0.3661 | 0.3675 | 0.7865 |
0.0144 | 3.0 | 2634 | 0.0722 | 0.3697 | 0.3705 | 0.3701 | 0.7866 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3