Einstein Models
Collection
Einstein series
•
11 items
•
Updated
•
7
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: data/merged_all.json
ds_type: json
type: alpaca
conversation: chatml
- path: data/capybara_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: data/synthia-v1.3_sharegpt_12500.json
ds_type: json
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./Einstein-v3-model
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v3-7B
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "<|im_end|>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.038 | 0.0 | 1 | 1.1250 |
0.5254 | 0.25 | 107 | 0.5754 |
0.5144 | 0.5 | 214 | 0.5360 |
0.483 | 0.75 | 321 | 0.5118 |
0.4674 | 1.0 | 428 | 0.5059 |
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 64.09 |
AI2 Reasoning Challenge (25-Shot) | 62.29 |
HellaSwag (10-Shot) | 83.01 |
MMLU (5-Shot) | 63.32 |
TruthfulQA (0-shot) | 51.18 |
Winogrande (5-shot) | 79.95 |
GSM8k (5-shot) | 44.81 |