MetaMath-OpenHermes-2.5-neural-chat-v3-3-Slerp
This is the model for MetaMath-OpenHermes-2.5-neural-chat-v3-3-Slerp. I used mergekit to merge models.
Yaml Config to reproduce
slices:
- sources:
- model: meta-math/MetaMath-Mistral-7B
layer_range: [0, 32]
- model: PulsarAI/OpenHermes-2.5-neural-chat-v3-3-Slerp
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
- Downloads last month
- 1,376
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Weyaxi/MetaMath-OpenHermes-2.5-neural-chat-v3-3-Slerp
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard64.590
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard64.590
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.390
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.390
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.270
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.270
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.140
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.140
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.640
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.640