Edit model card

t5-small-devices-sum-ver3

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1325
  • Rouge1: 95.6631
  • Rouge2: 83.6149
  • Rougel: 95.6622
  • Rougelsum: 95.6632
  • Gen Len: 4.9279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 467 0.3307 90.9817 74.3762 90.9596 90.9781 4.7527
1.0254 2.0 934 0.2365 92.6761 78.1252 92.6664 92.6682 4.8004
0.3526 3.0 1401 0.1904 93.8503 80.4523 93.8286 93.8338 4.8221
0.2643 4.0 1868 0.1638 94.8079 82.1779 94.7815 94.7853 4.917
0.2075 5.0 2335 0.1503 95.1619 82.6284 95.1533 95.1578 4.9263
0.1831 6.0 2802 0.1408 95.2357 82.8152 95.2261 95.2263 4.9287
0.161 7.0 3269 0.1386 95.4993 83.2609 95.4935 95.4933 4.9269
0.1589 8.0 3736 0.1344 95.6363 83.4727 95.6304 95.632 4.9309
0.1517 9.0 4203 0.1330 95.6702 83.6329 95.6669 95.6736 4.9301
0.1436 10.0 4670 0.1325 95.6631 83.6149 95.6622 95.6632 4.9279

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.