To generate text using the AutoTokenizer and AutoModelForCausalLM from the Hugging Face Transformers library, you can follow these steps. First, ensure you have the necessary libraries installed:

pip install transformers torch

Then, use the following Python code to load the model and generate text:

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")

# Define the input prompt
input_text = "Hello, how are you doing today?"

# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors="pt")

# Generate text
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)

# Decode the generated text
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print(generated_text)

Explanation:

  1. Load the Tokenizer and Model:

    tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
    model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
    

    This code loads the tokenizer and model from the specified Hugging Face model repository.

  2. Define the Input Prompt:

    input_text = "Hello, how are you doing today?"
    

    This is the text prompt that you want the model to complete or generate text from.

  3. Encode the Input Text:

    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    

    The tokenizer.encode method converts the input text into token IDs that the model can process. The return_tensors="pt" argument specifies that the output should be in the form of PyTorch tensors.

  4. Generate Text:

    output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
    

    The model.generate method generates text based on the input token IDs.

    • max_length=50 specifies the maximum length of the generated text.
    • num_return_sequences=1 specifies the number of generated text sequences to return.
    • do_sample=True indicates that sampling should be used to generate text, which introduces some randomness and can produce more varied text.
  5. Decode the Generated Text:

    generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    

    The tokenizer.decode method converts the generated token IDs back into human-readable text. The skip_special_tokens=True argument ensures that special tokens (like <|endoftext|>) are not included in the output.

  6. Print the Generated Text:

    print(generated_text)
    

    This prints the generated text to the console.

You can modify the input prompt and the parameters of the model.generate method to suit your needs, such as adjusting max_length for longer or shorter text generation, or changing num_return_sequences to generate multiple variations.

Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Xennon-BD/Doctor-Chad

Quantizations
1 model

Dataset used to train Xennon-BD/Doctor-Chad