|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- mistral |
|
- Eclipse-13B-dpo |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Eclipse-13B-dpo |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 64.59 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.0 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 64.85 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 54.76 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 84.61 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 69.37 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo |
|
name: Open LLM Leaderboard |
|
--- |
|
# Model Card for Eclipse-13B-dpo |
|
|
|
Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020). |
|
|
|
## Instruction format |
|
|
|
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. |
|
|
|
E.g. |
|
``` |
|
text = "<s>[INST] What is your favourite condiment? [/INST]" |
|
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " |
|
"[INST] Do you have mayonnaise recipes? [/INST]" |
|
``` |
|
|
|
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Xenon1/Eclipse-13B-dpo") |
|
tokenizer = AutoTokenizer.from_pretrained("Xenon1/Eclipse-13B-dpo") |
|
|
|
messages = [ |
|
{"role": "user", "content": "What is your favourite condiment?"}, |
|
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, |
|
{"role": "user", "content": "Do you have mayonnaise recipes?"} |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |
|
|
|
## Model Architecture |
|
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: |
|
- Grouped-Query Attention |
|
- Sliding-Window Attention |
|
- Byte-fallback BPE tokenizer |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xenon1__Eclipse-13B-dpo) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |70.53| |
|
|AI2 Reasoning Challenge (25-Shot)|64.59| |
|
|HellaSwag (10-Shot) |85.00| |
|
|MMLU (5-Shot) |64.85| |
|
|TruthfulQA (0-shot) |54.76| |
|
|Winogrande (5-shot) |84.61| |
|
|GSM8k (5-shot) |69.37| |
|
|
|
|