|
--- |
|
license: apache-2.0 |
|
tags: |
|
- biology |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This model is optimized for plant science by continuing pertaining on over 1.5 million plant science academic articles based on LLaMa-2. |
|
|
|
|
|
- **Developed by:** [UCSB] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [LLaMa-2] |
|
|
|
- **Paper [optional]:** [https://arxiv.org/pdf/2401.01600.pdf] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## How to Get Started with the Model |
|
```python |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
import torch |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("Xianjun/PLLaMa-7b-base") |
|
model = LlamaForCausalLM.from_pretrained("Xianjun/PLLaMa-7b-base").half().to("cuda") |
|
|
|
instruction = "How to ..." |
|
batch = tokenizer(instruction, return_tensors="pt", add_special_tokens=False).to("cuda") |
|
with torch.no_grad(): |
|
output = model.generate(**batch, max_new_tokens=512, temperature=0.7, do_sample=True) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
``` |
|
|
|
## Citation |
|
If you find PLLaMa useful in your research, please cite the following paper: |
|
|
|
```latex |
|
@inproceedings{Yang2024PLLaMaAO, |
|
title={PLLaMa: An Open-source Large Language Model for Plant Science}, |
|
author={Xianjun Yang and Junfeng Gao and Wenxin Xue and Erik Alexandersson}, |
|
year={2024}, |
|
url={https://api.semanticscholar.org/CorpusID:266741610} |
|
} |
|
``` |