metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- speech_commands
metrics:
- accuracy
- f1
model-index:
- name: wav2vec
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: speech_commands
type: speech_commands
config: v0.01
split: test
args: v0.01
metrics:
- name: Accuracy
type: accuracy
value: 0.8909444985394352
- name: F1
type: f1
value: 0.8408887171290298
wav2vec
This model is a fine-tuned version of facebook/wav2vec2-base on the speech_commands dataset. It achieves the following results on the evaluation set:
- Loss: 0.8904
- Accuracy: 0.8909
- F1: 0.8409
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 240
- eval_batch_size: 240
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.4272 | 1.0 | 213 | 1.3926 | 0.8845 | 0.8359 |
0.9354 | 2.0 | 426 | 0.9938 | 0.8877 | 0.8598 |
0.7761 | 3.0 | 639 | 0.8904 | 0.8909 | 0.8409 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0