masked-lm-tpu / README.md
Zemulax's picture
Training in progress epoch 98
4f2f573
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Zemulax/masked-lm-tpu
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Zemulax/masked-lm-tpu
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 7.7770
- Train Accuracy: 0.0241
- Validation Loss: 7.7589
- Validation Accuracy: 0.0230
- Epoch: 98
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 223250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 11750, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 10.2868 | 0.0 | 10.2891 | 0.0 | 0 |
| 10.2817 | 0.0000 | 10.2764 | 0.0 | 1 |
| 10.2772 | 0.0000 | 10.2667 | 0.0000 | 2 |
| 10.2604 | 0.0000 | 10.2521 | 0.0 | 3 |
| 10.2421 | 0.0000 | 10.2282 | 0.0000 | 4 |
| 10.2219 | 0.0 | 10.2010 | 0.0 | 5 |
| 10.1957 | 0.0 | 10.1669 | 0.0 | 6 |
| 10.1667 | 0.0000 | 10.1388 | 0.0000 | 7 |
| 10.1278 | 0.0000 | 10.0908 | 0.0000 | 8 |
| 10.0848 | 0.0000 | 10.0405 | 0.0001 | 9 |
| 10.0496 | 0.0002 | 9.9921 | 0.0007 | 10 |
| 9.9940 | 0.0010 | 9.9422 | 0.0039 | 11 |
| 9.9424 | 0.0035 | 9.8765 | 0.0110 | 12 |
| 9.8826 | 0.0092 | 9.8156 | 0.0182 | 13 |
| 9.8225 | 0.0155 | 9.7461 | 0.0209 | 14 |
| 9.7670 | 0.0201 | 9.6768 | 0.0222 | 15 |
| 9.7065 | 0.0219 | 9.6127 | 0.0222 | 16 |
| 9.6352 | 0.0227 | 9.5445 | 0.0220 | 17 |
| 9.5757 | 0.0226 | 9.4795 | 0.0219 | 18 |
| 9.4894 | 0.0232 | 9.3985 | 0.0222 | 19 |
| 9.4277 | 0.0234 | 9.3386 | 0.0222 | 20 |
| 9.3676 | 0.0229 | 9.2753 | 0.0220 | 21 |
| 9.2980 | 0.0229 | 9.2170 | 0.0219 | 22 |
| 9.2361 | 0.0233 | 9.1518 | 0.0219 | 23 |
| 9.1515 | 0.0236 | 9.0827 | 0.0223 | 24 |
| 9.1171 | 0.0228 | 9.0406 | 0.0218 | 25 |
| 9.0447 | 0.0234 | 8.9867 | 0.0218 | 26 |
| 9.0119 | 0.0229 | 8.9307 | 0.0221 | 27 |
| 8.9625 | 0.0229 | 8.8969 | 0.0221 | 28 |
| 8.9098 | 0.0230 | 8.8341 | 0.0223 | 29 |
| 8.8726 | 0.0227 | 8.8118 | 0.0220 | 30 |
| 8.8574 | 0.0223 | 8.7910 | 0.0219 | 31 |
| 8.7798 | 0.0231 | 8.7506 | 0.0221 | 32 |
| 8.7535 | 0.0231 | 8.7055 | 0.0222 | 33 |
| 8.7333 | 0.0228 | 8.6801 | 0.0223 | 34 |
| 8.6985 | 0.0231 | 8.6837 | 0.0220 | 35 |
| 8.6816 | 0.0229 | 8.6243 | 0.0223 | 36 |
| 8.6356 | 0.0228 | 8.6323 | 0.0217 | 37 |
| 8.6392 | 0.0225 | 8.5603 | 0.0225 | 38 |
| 8.5802 | 0.0233 | 8.5722 | 0.0219 | 39 |
| 8.5825 | 0.0228 | 8.5548 | 0.0220 | 40 |
| 8.5625 | 0.0228 | 8.5272 | 0.0220 | 41 |
| 8.5415 | 0.0228 | 8.5200 | 0.0222 | 42 |
| 8.5124 | 0.0230 | 8.4787 | 0.0222 | 43 |
| 8.4999 | 0.0229 | 8.4819 | 0.0218 | 44 |
| 8.4561 | 0.0235 | 8.4453 | 0.0221 | 45 |
| 8.4854 | 0.0223 | 8.4378 | 0.0220 | 46 |
| 8.4367 | 0.0229 | 8.4212 | 0.0222 | 47 |
| 8.4096 | 0.0232 | 8.4033 | 0.0221 | 48 |
| 8.4162 | 0.0228 | 8.3869 | 0.0221 | 49 |
| 8.4005 | 0.0229 | 8.3768 | 0.0218 | 50 |
| 8.3583 | 0.0235 | 8.3470 | 0.0224 | 51 |
| 8.3428 | 0.0235 | 8.3540 | 0.0221 | 52 |
| 8.3491 | 0.0231 | 8.3201 | 0.0225 | 53 |
| 8.3551 | 0.0231 | 8.3382 | 0.0221 | 54 |
| 8.3186 | 0.0231 | 8.3136 | 0.0219 | 55 |
| 8.3139 | 0.0226 | 8.2844 | 0.0222 | 56 |
| 8.3170 | 0.0229 | 8.2740 | 0.0221 | 57 |
| 8.2886 | 0.0231 | 8.2485 | 0.0223 | 58 |
| 8.2648 | 0.0233 | 8.2336 | 0.0223 | 59 |
| 8.2714 | 0.0225 | 8.2321 | 0.0221 | 60 |
| 8.2446 | 0.0233 | 8.2135 | 0.0223 | 61 |
| 8.2303 | 0.0230 | 8.1980 | 0.0223 | 62 |
| 8.2022 | 0.0237 | 8.1996 | 0.0222 | 63 |
| 8.2222 | 0.0227 | 8.1822 | 0.0222 | 64 |
| 8.1690 | 0.0236 | 8.2005 | 0.0220 | 65 |
| 8.1741 | 0.0233 | 8.1446 | 0.0226 | 66 |
| 8.1990 | 0.0224 | 8.1586 | 0.0219 | 67 |
| 8.1395 | 0.0236 | 8.1243 | 0.0225 | 68 |
| 8.1675 | 0.0229 | 8.1275 | 0.0222 | 69 |
| 8.1432 | 0.0229 | 8.1374 | 0.0217 | 70 |
| 8.1197 | 0.0234 | 8.1078 | 0.0221 | 71 |
| 8.1046 | 0.0232 | 8.0991 | 0.0221 | 72 |
| 8.1013 | 0.0231 | 8.0794 | 0.0222 | 73 |
| 8.0887 | 0.0228 | 8.0720 | 0.0221 | 74 |
| 8.0661 | 0.0233 | 8.0573 | 0.0222 | 75 |
| 8.0548 | 0.0231 | 8.0313 | 0.0226 | 76 |
| 8.0307 | 0.0235 | 8.0278 | 0.0222 | 77 |
| 8.0626 | 0.0226 | 8.0084 | 0.0224 | 78 |
| 8.0276 | 0.0229 | 8.0099 | 0.0221 | 79 |
| 8.0213 | 0.0231 | 7.9930 | 0.0222 | 80 |
| 7.9798 | 0.0237 | 7.9742 | 0.0224 | 81 |
| 8.0135 | 0.0226 | 7.9857 | 0.0218 | 82 |
| 7.9500 | 0.0235 | 7.9505 | 0.0223 | 83 |
| 7.9519 | 0.0234 | 7.9711 | 0.0217 | 84 |
| 7.9616 | 0.0228 | 7.9288 | 0.0223 | 85 |
| 7.9803 | 0.0225 | 7.8997 | 0.0226 | 86 |
| 7.9369 | 0.0227 | 7.9015 | 0.0225 | 87 |
| 7.9309 | 0.0229 | 7.9010 | 0.0224 | 88 |
| 7.9367 | 0.0226 | 7.8988 | 0.0220 | 89 |
| 7.8840 | 0.0230 | 7.8774 | 0.0216 | 90 |
| 7.8785 | 0.0233 | 7.8527 | 0.0225 | 91 |
| 7.8998 | 0.0226 | 7.8509 | 0.0219 | 92 |
| 7.8451 | 0.0232 | 7.8488 | 0.0221 | 93 |
| 7.8596 | 0.0231 | 7.8310 | 0.0222 | 94 |
| 7.8434 | 0.0231 | 7.8168 | 0.0229 | 95 |
| 7.7929 | 0.0238 | 7.7815 | 0.0233 | 96 |
| 7.8174 | 0.0236 | 7.7857 | 0.0232 | 97 |
| 7.7770 | 0.0241 | 7.7589 | 0.0230 | 98 |
### Framework versions
- Transformers 4.30.1
- TensorFlow 2.12.0
- Tokenizers 0.13.3