mt5-small-task1-dataset4
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2245
- Accuracy: 0.138
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
9.1823 | 1.0 | 250 | 2.2930 | 0.0 |
2.763 | 2.0 | 500 | 1.8604 | 0.0 |
2.3034 | 3.0 | 750 | 1.6307 | 0.074 |
2.0136 | 4.0 | 1000 | 1.6494 | 0.076 |
1.8156 | 5.0 | 1250 | 1.4797 | 0.084 |
1.6683 | 6.0 | 1500 | 1.4214 | 0.094 |
1.5806 | 7.0 | 1750 | 1.3692 | 0.094 |
1.5035 | 8.0 | 2000 | 1.3212 | 0.106 |
1.4451 | 9.0 | 2250 | 1.2997 | 0.118 |
1.4045 | 10.0 | 2500 | 1.2689 | 0.128 |
1.3742 | 11.0 | 2750 | 1.2515 | 0.136 |
1.3456 | 12.0 | 3000 | 1.2411 | 0.13 |
1.325 | 13.0 | 3250 | 1.2264 | 0.14 |
1.3226 | 14.0 | 3500 | 1.2229 | 0.146 |
1.3035 | 15.0 | 3750 | 1.2245 | 0.138 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ZhiguangHan/mt5-small-task1-dataset4
Base model
google/mt5-small