SOLAR-10.7B-Instruct-Forest-DPO

Introducing SOLAR-10.7B-Instruct-Forest-DPO, a LLM fine-tuned with base model upstage/SOLAR-10.7B-Instruct-v1.0, using direct preference optimization. This model showcases exceptional prowess across a spectrum of natural language processing (NLP) tasks.

A mixture of the following datasets was used for fine-tuning.

  1. Intel/orca_dpo_pairs
  2. nvidia/HelpSteer
  3. jondurbin/truthy-dpo-v0.1

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
181
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO-v1

Quantizations
3 models

Datasets used to train abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO-v1

Spaces using abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO-v1 2