MonarchCoder-7B

image/jpeg

MonarchCoder-7B is a slerp merge of the following models using LazyMergekit:

The main aim behind creating this model is to create a model that performs well in reasoning, conversation, and coding. AlphaMonarch pperforms amazing on reasoning and conversation tasks. Merging AlphaMonarch with a coding model yielded MonarchCoder-7B which performs better on OpenLLM, Nous, and HumanEval benchmark. Although MonarchCoder-2x7B performs better than MonarchCoder-7B.

πŸ† Evaluation results

|             Metric              |MonarchCoder-Moe-2x7B||MonarchCoder-7B||AlphaMonarch|
|---------------------------------|---------------------|-----------------|------------|
|Avg.                             |       74.23         |      71.17      |   75.99    |
|HumanEval                        |       41.15         |      39.02      |   34.14    |
|HumanEval+                       |       29.87         |      31.70      |   29.26    |
|MBPP                             |       40.60         |       *         |     *      |
|AI2 Reasoning Challenge (25-Shot)|       70.99         |      68.52      |   73.04    |
|HellaSwag (10-Shot)              |       87.99         |      87.30      |   89.18    |
|MMLU (5-Shot)                    |       65.11         |      64.65      |   64.40    |
|TruthfulQA (0-shot)              |       71.25         |      61.21      |   77.91    |
|Winogrande (5-shot)              |       80.66         |      80.19     .|   84.69    |
|GSM8k (5-shot)           .       |       69.37         |      65.13      |   66.72    | 

🧩 Configuration

slices:
  - sources:
      - model: Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0
        layer_range: [0, 32]
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abideen/MonarchCoder-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
75
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abideen/MonarchCoder-7B

Collections including abideen/MonarchCoder-7B

Evaluation results