metadata
license: mit
base_model: indobenchmark/indobert-large-p1
tags:
- generated_from_keras_callback
model-index:
- name: aditnnda/gacoan_reviewer
results: []
aditnnda/gacoan_reviewer
This model is a fine-tuned version of indobenchmark/indobert-large-p1 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0001
- Validation Loss: 0.4435
- Train Accuracy: 0.9386
- Epoch: 24
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3550, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.2553 | 0.1732 | 0.9331 | 0 |
0.0938 | 0.1571 | 0.9400 | 1 |
0.0310 | 0.2345 | 0.9386 | 2 |
0.0138 | 0.3288 | 0.9358 | 3 |
0.0140 | 0.3345 | 0.9177 | 4 |
0.0033 | 0.3502 | 0.9386 | 5 |
0.0118 | 0.3387 | 0.9344 | 6 |
0.0269 | 0.4487 | 0.9024 | 7 |
0.0188 | 0.3228 | 0.9331 | 8 |
0.0017 | 0.3581 | 0.9372 | 9 |
0.0020 | 0.4125 | 0.9233 | 10 |
0.0021 | 0.4143 | 0.9247 | 11 |
0.0011 | 0.4353 | 0.9303 | 12 |
0.0002 | 0.4285 | 0.9344 | 13 |
0.0005 | 0.4350 | 0.9344 | 14 |
0.0002 | 0.4340 | 0.9344 | 15 |
0.0002 | 0.4026 | 0.9400 | 16 |
0.0001 | 0.4123 | 0.9414 | 17 |
0.0001 | 0.4228 | 0.9414 | 18 |
0.0001 | 0.4294 | 0.9386 | 19 |
0.0001 | 0.4385 | 0.9386 | 20 |
0.0001 | 0.4411 | 0.9386 | 21 |
0.0001 | 0.4423 | 0.9386 | 22 |
0.0001 | 0.4431 | 0.9386 | 23 |
0.0001 | 0.4435 | 0.9386 | 24 |
Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0