metadata
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Esteu tots millor callats, no us puc ni veure!
- text: Puc canviar el meu idioma preferit?
- text: No serveixes per res, és un sistema de merda!
- text: >-
Com va tot, com estàs? Quin és l'objecte de la convocatòria de subvencions
de l'Ajuntament de Sant Boi de Llobregat?
- text: Quin és el millor lloc per comprar un regal?
inference: true
SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
2 |
|
0 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/gret6")
# Run inference
preds = model("Puc canviar el meu idioma preferit?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 9.3443 | 36 |
Label | Training Sample Count |
---|---|
0 | 70 |
1 | 71 |
2 | 71 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: epoch
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0021 | 1 | 0.1891 | - |
0.1066 | 50 | 0.1719 | - |
0.2132 | 100 | 0.0455 | - |
0.3198 | 150 | 0.0013 | - |
0.4264 | 200 | 0.0004 | - |
0.5330 | 250 | 0.0002 | - |
0.6397 | 300 | 0.0002 | - |
0.7463 | 350 | 0.0001 | - |
0.8529 | 400 | 0.0001 | - |
0.9595 | 450 | 0.0001 | - |
1.0 | 469 | - | 0.0062 |
1.0661 | 500 | 0.0001 | - |
1.1727 | 550 | 0.0001 | - |
1.2793 | 600 | 0.0001 | - |
1.3859 | 650 | 0.0001 | - |
1.4925 | 700 | 0.0001 | - |
1.5991 | 750 | 0.0001 | - |
1.7058 | 800 | 0.0001 | - |
1.8124 | 850 | 0.0001 | - |
1.9190 | 900 | 0.0001 | - |
2.0 | 938 | - | 0.0042 |
2.0256 | 950 | 0.0 | - |
2.1322 | 1000 | 0.0 | - |
2.2388 | 1050 | 0.0 | - |
2.3454 | 1100 | 0.0 | - |
2.4520 | 1150 | 0.0 | - |
2.5586 | 1200 | 0.0 | - |
2.6652 | 1250 | 0.0 | - |
2.7719 | 1300 | 0.0 | - |
2.8785 | 1350 | 0.0 | - |
2.9851 | 1400 | 0.0 | - |
3.0 | 1407 | - | 0.0034 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.42.2
- PyTorch: 2.5.0+cu121
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}