adriansanz's picture
Add SetFit model
8af77d6 verified
metadata
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Esteu tots millor callats, no us puc ni veure!
  - text: Puc canviar el meu idioma preferit?
  - text: No serveixes per res, és un sistema de merda!
  - text: >-
      Com va tot, com estàs? Quin és l'objecte de la convocatòria de subvencions
      de l'Ajuntament de Sant Boi de Llobregat?
  - text: Quin és el millor lloc per comprar un regal?
inference: true

SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'Sou uns fills de puta, no valen res, et feu fora, sou un inútil!'
  • 'Quin és el seu propòsit?'
  • "Aquest text és Ofensiu o fora del domini per a un cercador de tràmits d'un ajuntament"
2
  • 'Ei, què tal? Com va tot?'
  • 'Bona tarda! Què tal?'
  • 'Què tal, com va?'
0
  • "Hola Necessito saber si la modificació no substancial que faré a la meva activitat sotmesa a comunicació prèvia ambiental ha de ser comunicada a l'Ajuntament i no ha de figurar a les actes de control periòdic"
  • "Quin és l'objectiu de la Llei 11/2009?"
  • 'Quin és el benefici de la matrícula?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/gret6")
# Run inference
preds = model("Puc canviar el meu idioma preferit?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 9.3443 36
Label Training Sample Count
0 70
1 71
2 71

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • evaluation_strategy: epoch
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0021 1 0.1891 -
0.1066 50 0.1719 -
0.2132 100 0.0455 -
0.3198 150 0.0013 -
0.4264 200 0.0004 -
0.5330 250 0.0002 -
0.6397 300 0.0002 -
0.7463 350 0.0001 -
0.8529 400 0.0001 -
0.9595 450 0.0001 -
1.0 469 - 0.0062
1.0661 500 0.0001 -
1.1727 550 0.0001 -
1.2793 600 0.0001 -
1.3859 650 0.0001 -
1.4925 700 0.0001 -
1.5991 750 0.0001 -
1.7058 800 0.0001 -
1.8124 850 0.0001 -
1.9190 900 0.0001 -
2.0 938 - 0.0042
2.0256 950 0.0 -
2.1322 1000 0.0 -
2.2388 1050 0.0 -
2.3454 1100 0.0 -
2.4520 1150 0.0 -
2.5586 1200 0.0 -
2.6652 1250 0.0 -
2.7719 1300 0.0 -
2.8785 1350 0.0 -
2.9851 1400 0.0 -
3.0 1407 - 0.0034

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.0+cu121
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}