|
--- |
|
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Esteu tots millor callats, no us puc ni veure! |
|
- text: Puc canviar el meu idioma preferit? |
|
- text: No serveixes per res, és un sistema de merda! |
|
- text: Com va tot, com estàs? Quin és l'objecte de la convocatòria de subvencions |
|
de l'Ajuntament de Sant Boi de Llobregat? |
|
- text: Quin és el millor lloc per comprar un regal? |
|
inference: true |
|
--- |
|
|
|
# SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 1 | <ul><li>'Sou uns fills de puta, no valen res, et feu fora, sou un inútil!'</li><li>'Quin és el seu propòsit?'</li><li>"Aquest text és Ofensiu o fora del domini per a un cercador de tràmits d'un ajuntament"</li></ul> | |
|
| 2 | <ul><li>'Ei, què tal? Com va tot?'</li><li>'Bona tarda! Què tal?'</li><li>'Què tal, com va?'</li></ul> | |
|
| 0 | <ul><li>"Hola Necessito saber si la modificació no substancial que faré a la meva activitat sotmesa a comunicació prèvia ambiental ha de ser comunicada a l'Ajuntament i no ha de figurar a les actes de control periòdic"</li><li>"Quin és l'objectiu de la Llei 11/2009?"</li><li>'Quin és el benefici de la matrícula?'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("adriansanz/gret6") |
|
# Run inference |
|
preds = model("Puc canviar el meu idioma preferit?") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 9.3443 | 36 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 70 | |
|
| 1 | 71 | |
|
| 2 | 71 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (64, 64) |
|
- num_epochs: (3, 3) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- evaluation_strategy: epoch |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0021 | 1 | 0.1891 | - | |
|
| 0.1066 | 50 | 0.1719 | - | |
|
| 0.2132 | 100 | 0.0455 | - | |
|
| 0.3198 | 150 | 0.0013 | - | |
|
| 0.4264 | 200 | 0.0004 | - | |
|
| 0.5330 | 250 | 0.0002 | - | |
|
| 0.6397 | 300 | 0.0002 | - | |
|
| 0.7463 | 350 | 0.0001 | - | |
|
| 0.8529 | 400 | 0.0001 | - | |
|
| 0.9595 | 450 | 0.0001 | - | |
|
| 1.0 | 469 | - | 0.0062 | |
|
| 1.0661 | 500 | 0.0001 | - | |
|
| 1.1727 | 550 | 0.0001 | - | |
|
| 1.2793 | 600 | 0.0001 | - | |
|
| 1.3859 | 650 | 0.0001 | - | |
|
| 1.4925 | 700 | 0.0001 | - | |
|
| 1.5991 | 750 | 0.0001 | - | |
|
| 1.7058 | 800 | 0.0001 | - | |
|
| 1.8124 | 850 | 0.0001 | - | |
|
| 1.9190 | 900 | 0.0001 | - | |
|
| 2.0 | 938 | - | 0.0042 | |
|
| 2.0256 | 950 | 0.0 | - | |
|
| 2.1322 | 1000 | 0.0 | - | |
|
| 2.2388 | 1050 | 0.0 | - | |
|
| 2.3454 | 1100 | 0.0 | - | |
|
| 2.4520 | 1150 | 0.0 | - | |
|
| 2.5586 | 1200 | 0.0 | - | |
|
| 2.6652 | 1250 | 0.0 | - | |
|
| 2.7719 | 1300 | 0.0 | - | |
|
| 2.8785 | 1350 | 0.0 | - | |
|
| 2.9851 | 1400 | 0.0 | - | |
|
| 3.0 | 1407 | - | 0.0034 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.2.1 |
|
- Transformers: 4.42.2 |
|
- PyTorch: 2.5.0+cu121 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |