metadata
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: intent_analysis
results: []
intent_analysis
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0133
- Accuracy: 0.9986
- Precision: 0.9982
- Recall: 0.9983
- F1: 0.9982
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1768 | 1.0 | 729 | 0.0408 | 0.9914 | 0.9939 | 0.9896 | 0.9917 |
0.0575 | 2.0 | 1458 | 0.0392 | 0.99 | 0.9885 | 0.9879 | 0.9880 |
0.0258 | 3.0 | 2187 | 0.0133 | 0.9986 | 0.9982 | 0.9983 | 0.9982 |
0.01 | 4.0 | 2916 | 0.0151 | 0.9986 | 0.9982 | 0.9983 | 0.9982 |
0.0044 | 5.0 | 3645 | 0.0133 | 0.9986 | 0.9982 | 0.9983 | 0.9982 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3