intent_analysis_v0 / README.md
adriansanz's picture
clasificador_xml_5ep
8b4b66e verified
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: intent_analysis
    results: []

intent_analysis

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0133
  • Accuracy: 0.9986
  • Precision: 0.9982
  • Recall: 0.9983
  • F1: 0.9982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.1768 1.0 729 0.0408 0.9914 0.9939 0.9896 0.9917
0.0575 2.0 1458 0.0392 0.99 0.9885 0.9879 0.9880
0.0258 3.0 2187 0.0133 0.9986 0.9982 0.9983 0.9982
0.01 4.0 2916 0.0151 0.9986 0.9982 0.9983 0.9982
0.0044 5.0 3645 0.0133 0.9986 0.9982 0.9983 0.9982

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3