Edit model card

Meta-Llama-3-8Bee-GGUF

Quantized GGUF model files for Meta-Llama-3-8Bee from BEE-spoke-data

Original Model Card:

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
strict: false

# dataset
datasets:
    - path: BEE-spoke-data/bees-internal
      type: completion # format from earlier
      field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.05

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false

# WANDB
wandb_project: llama3-8bee
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: llama3-8bee-8192
hub_model_id: pszemraj/Meta-Llama-3-8Bee
hub_strategy: every_save

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5

load_in_8bit: false
load_in_4bit: false
bf16: auto
fp16:
tf32: true

torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
logging_steps: 10
xformers_attention:
flash_attention: true

warmup_steps: 25
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 3
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1 # Checkpoints saved at a time
output_dir: ./output-axolotl/output-model-gamma
resume_from_checkpoint:


deepspeed:
weight_decay: 0.0

special_tokens:
  pad_token: <|end_of_text|>

Meta-Llama-3-8Bee

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the BEE-spoke-data/bees-internal dataset (continued pretraining). It achieves the following results on the evaluation set:

  • Loss: 2.3319

Intended uses & limitations

  • unveiling knowledge about bees and apiary practice
  • needs further tuning to be used in 'instruct' type settings

Training and evaluation data

🐝🍯

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
No log 0.0 1 2.5339
2.3719 0.33 232 2.3658
2.2914 0.67 464 2.3319

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.3.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
32
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for afrideva/Meta-Llama-3-8Bee-GGUF

Quantized
(1)
this model

Dataset used to train afrideva/Meta-Llama-3-8Bee-GGUF