malhajar/phi-2-meditron-GGUF

Quantized GGUF model files for phi-2-meditron from malhajar

Name Quant method Size
phi-2-meditron.fp16.gguf fp16 5.56 GB
phi-2-meditron.q2_k.gguf q2_k 1.17 GB
phi-2-meditron.q3_k_m.gguf q3_k_m 1.48 GB
phi-2-meditron.q4_k_m.gguf q4_k_m 1.79 GB
phi-2-meditron.q5_k_m.gguf q5_k_m 2.07 GB
phi-2-meditron.q6_k.gguf q6_k 2.29 GB
phi-2-meditron.q8_0.gguf q8_0 2.96 GB

Original Model Card:

Model Card for Model ID

phi-2-meditron is a finetuned version of epfl-llm/meditron-7b using SFT Training on the Meditron Dataset. This model can answer information about different excplicit ideas in medicine (see epfl-llm/meditron-7b for more info)

Model Description

Prompt Template

### Instruction:

<prompt> (without the <>)

### Response:

How to Get Started with the Model

Use the code sample provided in the original post to interact with the model.

from transformers import AutoTokenizer,AutoModelForCausalLM
 
model_id = "malhajar/phi-2-meditron"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             torch_dtype=torch.float16,
                                              trust_remote_code= True,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_id)

question: "what is tract infection?"
# For generating a response
prompt = '''
### Instruction:
{question} 

### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
        top_p=0.95)
response = tokenizer.decode(output[0])

print(response)
Downloads last month
48
GGUF
Model size
2.78B params
Architecture
phi2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for afrideva/phi-2-meditron-GGUF

Base model

microsoft/phi-2
Quantized
(1)
this model

Dataset used to train afrideva/phi-2-meditron-GGUF