vince62s/phi-2-psy-GGUF
Quantized GGUF model files for phi-2-psy from vince62s
Name | Quant method | Size |
---|---|---|
phi-2-psy.fp16.gguf | fp16 | 5.56 GB |
phi-2-psy.q2_k.gguf | q2_k | 1.11 GB |
phi-2-psy.q3_k_m.gguf | q3_k_m | 1.43 GB |
phi-2-psy.q4_k_m.gguf | q4_k_m | 1.74 GB |
phi-2-psy.q5_k_m.gguf | q5_k_m | 2.00 GB |
phi-2-psy.q6_k.gguf | q6_k | 2.29 GB |
phi-2-psy.q8_0.gguf | q8_0 | 2.96 GB |
Original Model Card:
Phi-2-psy
Phi-2-psy is a merge of the following models:
π Evaluation
The evaluation was performed using LLM AutoEval on Nous suite.
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
phi-2-psy | 34.4 | 71.4 | 48.2 | 38.1 | 48.02 |
phixtral-2x2_8 | 34.1 | 70.4 | 48.8 | 37.8 | 47.78 |
dolphin-2_6-phi-2 | 33.1 | 69.9 | 47.4 | 37.2 | 46.89 |
phi-2-orange | 33.4 | 71.3 | 49.9 | 37.3 | 47.97 |
phi-2 | 28.0 | 70.8 | 44.4 | 35.2 | 44.61 |
𧩠Configuration
slices:
- sources:
- model: rhysjones/phi-2-orange
layer_range: [0, 32]
- model: cognitivecomputations/dolphin-2_6-phi-2
layer_range: [0, 32]
merge_method: slerp
base_model: rhysjones/phi-2-orange
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("vince62s/phi-2-psy", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("vince62s/phi-2-psy", trust_remote_code=True)
inputs = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
- Downloads last month
- 33
Model tree for afrideva/phi-2-psy-GGUF
Base model
vince62s/phi-2-psy