sage-fredt5-distilled-95m
Summary
The model corrects spelling and punctuation errors and typos by bringing all the words in the text to the norm of the Russian language. Corrector is a distilled version of the original model that had been trained based on the FRED-T5-1.7B architecture. An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library SAGE.
Public references
- SAGE library announcement, DataFest 2023
- Paper about synthetic error generation methods, Dialogue 2023
- SAGE EACL 2024 paper
Examples
Input | Output |
---|---|
И не чсно прохожим в этот день непогожйи почему я веселый такйо | И не ясно прохожим в этот день непогожий, почему я весёлый такой? |
Каждй день воттак делой, и спена балеть нибудет. А вотак каждый день ниделай | Каждый день вот так делай, и спена болеть не будет. А вот так каждый день — ни делай. |
Основая цель мероприятия практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий сокращение временных показателей реагирования. | Основная цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования. |
Metrics
Quality
Below are automatic metrics for determining the correctness of the spell checkers. We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets:
- RUSpellRU: texts collected from (LiveJournal), with manually corrected typos and errors;
- MultidomainGold: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
- MedSpellChecker: texts with errors from medical anamnesis;
- GitHubTypoCorpusRu: spelling errors and typos in commits from GitHub;
RUSpellRU
Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
---|---|---|---|---|---|---|---|---|---|
sage-fredt5-distilled-95m | 83.5 | 74.8 | 78.9 | 86.8 | 80.6 | 83.6 | 94.4 | 92.5 | 93.5 |
sage-ai-service | 90.3 | 86.3 | 88.2 | 90.3 | 86.6 | 88.4 | 95.2 | 95.9 | 95.6 |
gpt-3.5-turbo | 33.6 | 58.5 | 42.7 | 85.9 | 64.6 | 73.7 | 84.9 | 73.9 | 79.0 |
gpt-4 | 54.9 | 76.7 | 64.0 | 84.0 | 82.3 | 83.2 | 91.5 | 90.2 | 90.9 |
MultidomainGold
Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
---|---|---|---|---|---|---|---|---|---|
sage-fredt5-distilled-95m | 77.2 | 69.9 | 73.4 | 66.8 | 63.4 | 65.0 | 76.8 | 79.1 | 77.9 |
sage-ai-service | 81.6 | 77.7 | 79.6 | 70.2 | 67.5 | 68.8 | 80.5 | 80.5 | 80.5 |
gpt-3.5-turbo | 18.8 | 48.1 | 27.1 | 42.0 | 31.8 | 36.2 | 47.1 | 51.3 | 49.1 |
gpt-4 | 25.4 | 68.0 | 37.0 | 57.8 | 54.3 | 56.0 | 54.0 | 67.5 | 60.0 |
MedSpellChecker
Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
---|---|---|---|---|---|---|---|---|---|
sage-fredt5-distilled-95m | 65.1 | 64.8 | 64.9 | 78.6 | 63.1 | 70.0 | 63.5 | 74.7 | 68.7 |
sage-ai-service | 71.3 | 73.5 | 72.4 | 75.1 | 69.2 | 72.0 | 80.9 | 72.8 | 76.6 |
gpt-3.5-turbo | 14.7 | 45.9 | 22.3 | 69.9 | 52.3 | 59.8 | 26.4 | 41.8 | 32.3 |
gpt-4 | 37.8 | 72.3 | 49.6 | 81.4 | 64.3 | 71.9 | 73.0 | 62.1 | 67.1 |
GitHubTypoCorpusRu
Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) |
---|---|---|---|---|---|---|---|---|---|
sage-fredt5-distilled-95m | 57.8 | 48.5 | 52.7 | 45.2 | 39.5 | 42.1 | 29.9 | 46.2 | 36.3 |
sage-ai-service | 70.8 | 56.3 | 62.7 | 48.9 | 35.8 | 41.4 | 32.9 | 45.3 | 38.1 |
gpt-3.5-turbo | 23.7 | 38.7 | 29.4 | 37.6 | 23.3 | 28.7 | 19.6 | 35.9 | 25.3 |
gpt-4 | 27.0 | 52.8 | 35.7 | 45.9 | 32.6 | 38.2 | 25.7 | 36.8 | 30.2 |
How to use
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-fredt5-distilled-95m")
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-fredt5-distilled-95m")
model.to("cuda")
sentence = "И не чсно прохожим в этот день непогожйи почему я веселый такйо"
inputs = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_length = inputs["input_ids"].size(1) * 1.5)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# ["И не ясно прохожим в этот день непогожий, почему я весёлый такой?"]
Limitations
- Complex formatting may cause some trouble in output generation.
Resources
- SAGE library, GitHub
- sage-fredt5-large, HuggingFace
- sage-fredt5-distilled-95m, HuggingFace
- sage-m2m100-1.2B, HuggingFace
- sage-mt5-large, HuggingFace
License
Model FRED-T5-1.7B, on the basis of which our solution is made, and its source code are supplied under the MIT license. Our solution comes with MIT license also.
Specifications
- File size: 0.383 Gb;
- Framework: pytorch
- Version: v1.0
- Developer: SberDevices, AGI NLP
Contacts
- Downloads last month
- 990
Model tree for ai-forever/sage-fredt5-distilled-95m
Dataset used to train ai-forever/sage-fredt5-distilled-95m
Collection including ai-forever/sage-fredt5-distilled-95m
Evaluation results
- F1 (spell) on RUSpellRU (spell&punct)self-reported78.900
- F1 (punct) on RUSpellRU (spell&punct)self-reported83.600
- F1 (case) on RUSpellRU (spell&punct)self-reported93.500
- F1 (spell) on MultidomainGold (spell&punct)self-reported73.400
- F1 (punct) on MultidomainGold (spell&punct)self-reported65.000
- F1 (case) on MultidomainGold (spell&punct)self-reported77.900
- F1 (spell) on MedSpellchecker (spell&punct)self-reported64.900
- F1 (punct) on MedSpellchecker (spell&punct)self-reported70.000
- F1 (case) on MedSpellchecker (spell&punct)self-reported68.700
- F1 (spell) on GitHubTypoCorpusRu (spell&punct)self-reported52.700